\(\left(\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}-1}\right):\left(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(M=\left(\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}-1}\right):\left(\sqrt{x}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\) với x>0;x≠1

\(=\left(\dfrac{x\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(x-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{x-\sqrt{x}+\sqrt{x}}{\sqrt{x}-1}\)

\(M=\dfrac{x\sqrt{x}+1-x\sqrt{x}-x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}-1}{x}=\dfrac{-x+\sqrt{x}+2}{x\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(2-\sqrt{x}\right)}{x\left(\sqrt{x}+1\right)}=\dfrac{2-\sqrt{x}}{x}\)

vậy M=\(\dfrac{2-\sqrt{x}}{x}\)

vì x>0 nên để \(M< 0\Leftrightarrow\dfrac{2-\sqrt{x}}{x}< 0\Leftrightarrow2-\sqrt{x}< 0\Leftrightarrow\sqrt{x}>2\Leftrightarrow x>4\)

Bài 2: 

a: \(P=\dfrac{a-1}{2\sqrt{a}}\cdot\left(\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{a-1}\right)\)

\(=\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{2}=-2\sqrt{a}\)

b: Để P>=-2 thì P+2>=0

\(\Leftrightarrow-2\sqrt{a}+2>=0\)

=>0<=a<1

Bài 2:

a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)

\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)

\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)

b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)

8 tháng 1 2018

a) A=\(\dfrac{\sqrt{x}[\left(\sqrt{x}\right)^3-1]}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

A=\(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\) A=\(\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2\)

A=\(x-\sqrt{x}+1\)

b) A=\(\dfrac{3}{4}\)

=> \(x-\sqrt{x}+1=\dfrac{3}{4}\)

\(x-\sqrt{x}+\dfrac{1}{4}=0\)

\(\left(\sqrt{x}-\dfrac{1}{2}\right)^2=0\)

=> \(\sqrt{x}=\dfrac{1}{2}\)

=> \(x=\dfrac{1}{4}\)

Bài 1: 

a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)

b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)

=>3 căn x=3

=>căn x=1

hay x=1(loại)

17 tháng 6 2018

a) P=\(\left(\dfrac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\dfrac{1+x\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\right)\)

\(P=\left(\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}+\sqrt{x}\right)\left(\dfrac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)\(P=\left(1+\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}+\sqrt{x}-\sqrt{x}\right)\)

\(P=\left(1+2\sqrt{x}+x\right)\left(1-2\sqrt{x}+\sqrt{x}\right)\)

\(P=\left(1+x\right)^2-4x\)

\(P=1+2x+x^2-4x\)

\(P=1-2x+x^2\)

\(P=x^2-2x+1\)

\(P=\left(x-1\right)^2\)

b) Thay P=4 vào biểu thức ta có:

\(4=\left(x-1\right)^2\)

\(\Leftrightarrow\left(x-1\right)^2=2^2\)

\(\Leftrightarrow x-1=\pm2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy \(x_1=3;x_2=-1\)

18 tháng 9 2017

a) P = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

P = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

P = \(\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\left(\sqrt{x}-1\right)+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

P = \(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

P = \(\dfrac{x-1}{\sqrt{x}}\)

b) Để P > 0

\(\Rightarrow\dfrac{x-1}{\sqrt{x}}>0\)

\(x-1>0\)

\(x>1\)

c) Để P = 6

\(\Rightarrow\dfrac{x-1}{\sqrt{x}}=6\)

\(x-1=6\sqrt{x}\)

\(x-6\sqrt{x}-1=0\)

\(\left(\sqrt{x}-3-\sqrt{10}\right)\left(\sqrt{x}-3+\sqrt{10}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=3+\sqrt{10}\\\sqrt{x}=3-\sqrt{10}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=19+6\sqrt{10}\\x=19-6\sqrt{10}\end{matrix}\right.\)

25 tháng 6 2018

\(a.Q=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x\sqrt{x}-x+\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}}{x+1}\right)\)

\(ĐKXĐ:x\)\(0;x\) # \(1\)

\(Q=\left(\dfrac{x+1}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\dfrac{2}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right):\dfrac{x-\sqrt{x}+1}{x+1}\)

\(Q=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)}.\dfrac{x+1}{x-\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{x-\sqrt{x}+1}\)

\(b.\) Ta thấy : \(x-\sqrt{x}+1=x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

Mà : \(\sqrt{x}+1>0\)

\(Q>0\)

25 tháng 6 2018

Phần c thì sao bn

a)

\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\\ P=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\\ P=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b)

\(Q< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}}< 0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\\sqrt{x}-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x< 4\end{matrix}\right.\\ \Leftrightarrow0< x< 4\)

a: \(S=\dfrac{\sqrt{x}-1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-4-x+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{-3}\)

\(=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b: Để S=0 thì \(\sqrt{x}-2=0\)

hay x=4(loại)

1 tháng 9 2017

hình như câu 1,2 bn ghi sai biểu thức rồi

2 tháng 9 2017

xin lỗi nhé, bạn ghi lộn