\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\). tìm số nguyên x để A có giá trị là số nguyên<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2016

điều kiện: x>=0 và x khác 1

E=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)

muốn E nguyên thì \(\sqrt{x}+1\)={1,-1,-2,2}

  • \(\sqrt{x}-1=1\)=> x=4
  • \(\sqrt{x}-1=-1\)=>x=0
  • \(\sqrt{x}-1=-2\) VN
  • \(\sqrt{x}-1=2\)=> x=9

Vậy giá trị x là{0,4,9} thỏa đề bài
 

10 tháng 11 2016

a)Tại \(x=\frac{16}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)

Tại \(x=\frac{25}{9}\) ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)

b)Khi \(A=5\Rightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}=5\)(*)

Đk:\(\sqrt{x}-1\ne0\Rightarrow x\ne1;\sqrt{x}\ge0\Rightarrow x\ge0\)

Đặt \(\sqrt{x}+1=t\left(t\ge0\right)\),(*) trở thành

\(\frac{t}{t-2}=5\Rightarrow t=5\left(t-2\right)\)

\(\Rightarrow t=5t-10\)

\(\Rightarrow2t=5\Rightarrow t=\frac{5}{2}\)(thỏa mãn)

\(t=\frac{5}{2}\Rightarrow\sqrt{x}+1=\frac{5}{2}\)

\(\Rightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow\sqrt{x^2}=\left(\frac{3}{2}\right)^2\Leftrightarrow x=\frac{9}{4}\)(thỏa mãn)

Vậy \(x=\frac{9}{4}\)

 

 

 

14 tháng 5 2017

a) Thay \(x=\frac{16}{9}\) vào biểu thức ta có:

\(A=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}=\frac{\frac{7}{3}}{\frac{1}{3}}=7\)

Vậy \(A=7\)

Thay \(x=\frac{25}{9}\) vào biểu thức ta có:

\(A=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}=\frac{\frac{8}{3}}{\frac{2}{3}}=4\)

Vậy \(A=4\)

29 tháng 2 2020

ua, x,y,z o dau vay ban

29 tháng 2 2020

\(\frac{1}{3}-|\frac{5}{4}-2x|=\frac{1}{4}\)

\(\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{4}+\frac{1}{3}=\frac{7}{12}\)

\(\Leftrightarrow\orbr{\begin{cases}Th1:\frac{5}{4}-2x=\frac{7}{12}\\Th2:\frac{5}{4}-2x=-\frac{7}{12}\end{cases}}\)

\(\Leftrightarrow Th1:\frac{5}{4}-2x=\frac{7}{12}\)                                                 \(\Leftrightarrow Th2:\frac{5}{4}-2x=-\frac{7}{12}\)                      

                 \(\Leftrightarrow2x=\frac{7}{12}+\frac{5}{4}\)                                           \(\Leftrightarrow2x=-\frac{7}{12}+\frac{5}{4}\)

                  \(\Leftrightarrow2x=\frac{11}{6}\)                                                      \(\Leftrightarrow2x=\frac{2}{3}\)

                  \(\Leftrightarrow x=\frac{11}{12}\)                                                         \(\Leftrightarrow x=\frac{1}{3}\)

P/s : Mình làm bừa ạ nếu kh đúng xin mọi người chỉ thêm ~~

17 tháng 1 2020

1. Ta có: A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để A \(\in\)Z <=> \(4⋮\sqrt{x}-3\) <=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Lập bảng:

\(\sqrt{x}-3\)   1  -1  2   -2   4   -4
\(\sqrt{x}\)  4  2  5  1  7 -1 (loại)
x 16 4 25 1 49 

Vậy ....

17 tháng 1 2020

2. Ta có: B = \(\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\)

Do x2 + 3 \(\ge\)3  \(\forall\)x => \(\frac{12}{x^2+3}\le4\forall x\)

=> \(1+\frac{12}{x^2+3}\le5\forall x\)

Dấu "=" xảy ra <=> x = 0

Vậy Max B = 5 khi x = 0

17 tháng 9 2016

D là số nguyên khi \(\sqrt{x}\) - 1 là số nguyên .

\(\Leftrightarrow\sqrt{x}-1\inƯ_3\)

\(\Leftrightarrow\sqrt{x}-1\in\left\{1;3;-1;-3\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;4;0;-2\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{\sqrt{2};2;0\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{;2;0\right\}\)

Vậy x = 2 ; x = 0