K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

1 + 1 = 2 nha

30 tháng 11 2021

1 + 1 = 2

                   Học tốt

17 tháng 1 2022

bằng 10e39

17 tháng 1 2022

= 1x1039 nha 

2 tháng 2 2020

Bằng 2 nhé tớ search mạng rồi

!!!1

bốc phét

2 tháng 1 2022

1+1=2

HT

NV
15 tháng 8 2021

1.

a.

ĐKXĐ: \(x^2-1>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

\(log_2\left(x^2-1\right)=3\)

\(\Rightarrow x^2-1=8\)

\(\Leftrightarrow x^2=9\)

\(\Rightarrow x=\pm3\) (tm)

b.

ĐKXĐ: \(x>0\)

\(log_3x+log_{\sqrt{3}}x+log_{\dfrac{1}{3}}x=6\)

\(\Leftrightarrow log_3x+2log_3x-log_3x=6\)

\(\Leftrightarrow log_3x=3\)

\(\Rightarrow x=3^3=27\)

NV
15 tháng 8 2021

c. ĐKXĐ: \(x>0\)

\(log_{\sqrt{2}}^2x+3log_2x+log_{\dfrac{1}{2}}x=2\)

\(\Leftrightarrow\left(2log_2x\right)^2+3log_2x-log_2x=2\)

\(\Leftrightarrow4log_2^2x+2log_2x-2=0\)

\(\Rightarrow\left[{}\begin{matrix}log_2x=-1\\log_2x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\sqrt{2}\end{matrix}\right.\)

 

17 tháng 9 2017

s i n 2 x + c o s x = m <=>  - c o s x 2 x + c o s x + 1 = 0

Đặt t= cos x =>

=>f’(t)=-2t + 1.

Do x ∈ [0; π] => t ∈ [-1; 1]

Số nghiệm của phương trình đã cho chính là số giao điểm của đồ thị hàm số y = f(t) và đường thẳng y = m.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ bảng biến thiên ta có m ∈ (-1; 1) thì f(t)=m có 2 nghiệm

Chọn C

NM
4 tháng 10 2021

gọi n là số người trong bữa tiệc

gọi \(a_i\text{ là số cái bắt tay của người thứ i với tất các những người khác}\)

ta có \(\Sigma_{i=1}^n\text{ }a_i\text{ là một số chẵn }\)( do mỗi cái bắt tay đều được tính bởi cả hai người )

mà tổng số cái bắt tay của người bắt tay với chẵn người là số chẵn 

nên tổng số cái bắt tay của người bắt tay với lẻ người cũng là số chẵn

nên phải có chẵn người trong nhóm bắt tay với lẻ người 

vậy ta có điều phải chứng minh

24 tháng 5 2022

Vậy nói cho nó biết đi .-.

24 tháng 5 2022

j vậy bạn :v

AH
Akai Haruma
Giáo viên
16 tháng 11 2017

Câu 64:

Ta có:

\(6^x+(3-m)2^x-m=0\)

\(\Leftrightarrow 6^x+3.2^x=m(1+2^x)\)

\(\Leftrightarrow \frac{6^x+3.2^x}{2^x+1}-m=0\)

Xét \(f(x)=\frac{6^x+3.2^x}{2^x+1}-m\) là một hàm liên tục. Để pt \(f(x)=0\) có nghiệm trong khoảng \((0;1)\Rightarrow f(0).f(1)< 0\)

\(\Leftrightarrow (2-m)(4-m)< 0\)

\(\Leftrightarrow 2< m< 4\Leftrightarrow m\in (2;4)\)

Đáp án C

AH
Akai Haruma
Giáo viên
16 tháng 11 2017

Câu 65:

Ta có:

\(P=\log^2_{\frac{a}{b}}a^2+3\log_b\left(\frac{a}{b}\right)\)

\(\Leftrightarrow P=[2\log_{\frac{a}{b}}a]^2+3\log_b\left(\frac{a}{b}\right)\)

\(\Leftrightarrow P=4\log^2_{\frac{a}{b}}a+3(\log_ba-\log_bb)\)

\(\Leftrightarrow P=4\log^2_{\frac{a}{b}}a+3(\log_ba-1)\)

Biến đổi: \(\log_{\frac{a}{b}}a.\log_a\left(\frac{a}{b}\right)=1\)

\(\Rightarrow \log_{\frac{a}{b}}a=\frac{1}{\log_a\left(\frac{a}{b}\right)}=\frac{1}{\log_aa-\log_ab}=\frac{1}{1-\log_ab}\)

Do đó, \(P=\frac{4}{(1-\log_ab)^2}+3(\log_ba-1)\)

Đặt \(\log_ba=x\Rightarrow \log_ab=\frac{1}{x}\)

\(P=\frac{4x^2}{(x-1)^2}+3(x-1)\). Vì \(a>b>1\Rightarrow x>1\)

\(P'=\frac{3x^3-9x^2+x-3}{(x-1)^3}=0\)

\(\Leftrightarrow 3x^3-9x^2+x-3=0\Leftrightarrow x=3\)

Lập bảng biến thiên ta suy ra \(P_{\min}=P(3)=15\)

Đáp án D