K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2016

cảm ơn bạn

Bài 1: Cho hàm số: f(x) = ax2 – 2(a + 1)x + a + 2 ( a ≠ 0) a) Chứng tỏ rằng phương trình f(x) = 0 luôn có nghiệm thực. Tính các nghiệm đó. b) Tính tổng S và tích P của các nghiệm của phương trình f(x) = 0. Khảo sát sự biến thiên và vẽ đồ thị hàm số của S và P theo a. Bài 2: Cho hàm số: y= \(-\dfrac{1}{3}\)x3 + (a − 1)x2 + (a + 3)x − 4 a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm...
Đọc tiếp

Bài 1: Cho hàm số:

f(x) = ax2 – 2(a + 1)x + a + 2 ( a ≠ 0)

a) Chứng tỏ rằng phương trình f(x) = 0 luôn có nghiệm thực. Tính các nghiệm đó.

b) Tính tổng S và tích P của các nghiệm của phương trình f(x) = 0. Khảo sát sự biến thiên và vẽ đồ thị hàm số của S và P theo a.

Bài 2:

Cho hàm số: y= \(-\dfrac{1}{3}\)x3 + (a − 1)x2 + (a + 3)x − 4

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm số khi a = 0

b) Tính diện tích hình phẳng giới hạn bởi (C) và đường thẳng y = 0, x = -1, x = 1

Bài 3:

Cho hàm số : y = x3 + ax2 + bx + 1

a) Tìm a và b để đồ thị của hàm số đi qua hai điểm A(1, 2) và B(-2, -1)

b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với các giá trị tìm được của a và b.

c) Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường thẳng y = 0, x = 0, x = 1 và đồ thị (C) quanh trục hoành.


0
AH
Akai Haruma
Giáo viên
23 tháng 10 2020

Lời giải:

Đồ thị màu xanh lá là $y=4^x$

Đồ thị màu xanh dương là $y=\left(\frac{1}{4}\right)^x$

Bài 3: Lôgarit

NV
3 tháng 3 2020

Đặt \(\sqrt{1-x}=t\Rightarrow x=1-t^2\Rightarrow dx=-2tdt\)

\(I=\int\frac{2\left(1-t^2\right)-1}{t}\left(-2tdt\right)=\int\left(4t^2-2\right)dt=\frac{4}{3}t^3-2t+C\)

\(=\frac{4}{3}\left(1-x\right)\sqrt{1-x}-2\sqrt{1-x}+C\)

NV
15 tháng 4 2020

Trục Ox nhận \(\overrightarrow{u}=\left(1;0;0\right)\) là 1 vtcp

\(\overrightarrow{OM}=\left(1;0;-1\right)\)

Đặt \(\overrightarrow{v}=\left[\overrightarrow{u};\overrightarrow{OM}\right]=\left(0;-1;0\right)=-1\left(0;1;0\right)\)

\(\Rightarrow\left(\alpha\right)\) nhận \(\left(0;1;0\right)\) là 1 vtpt

Phương trình \(\left(\alpha\right)\)

\(0\left(x-1\right)+1\left(y-0\right)+0\left(z+1\right)=0\Leftrightarrow y=0\)

NV
9 tháng 6 2019

ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow mx-\sqrt{x-3}=m+1\Leftrightarrow m\left(x-1\right)=\sqrt{x-3}+1\)

\(\Leftrightarrow m=\frac{\sqrt{x-3}+1}{x-1}\)

Đặt \(\sqrt{x-3}=t\ge0\) \(\Rightarrow x=t^2+3\Rightarrow m=\frac{t+1}{t^2+2}\)

Xét hàm \(f\left(t\right)=\frac{t+1}{t^2+2}\Rightarrow f'\left(t\right)=\frac{t^2+2-2t\left(t+1\right)}{\left(t^2+2\right)^2}=\frac{-t^2-2t+2}{\left(t^2+2\right)^2}\)

\(f'\left(t\right)=0\Rightarrow t=\sqrt{3}-1\)

Ta có \(f\left(\sqrt{3}-1\right)=\frac{1+\sqrt{3}}{4}\); \(\lim\limits_{t\rightarrow+\infty}\frac{t+1}{t^2+1}=0\); \(f\left(0\right)=\frac{1}{2}\)

Dựa vào BBT, để pt đã cho có 2 nghiệm pb thì \(\frac{1}{2}\le m< \frac{1+\sqrt{3}}{4}\)

NV
23 tháng 4 2020

\(\left\{{}\begin{matrix}m+n+p=1\\-m-n-2p=0\\-2n-p=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\frac{3}{2}\\n=\frac{1}{2}\\p=-1\end{matrix}\right.\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm sốỨng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

24 tháng 5 2017

g'(x) là đạo hàm của g(x) phải không bạn? Xét đạo hàm tới 2 lần lận à?