Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc cậu giải được câu a) rồi nhỉ ?
Mình giải câu b) nha.
P(x)=-Q(x)\(\Rightarrow\)3x3+x2-3x+7=3x3+x2+x+15
-3x+7= x+15
-4x =8
x =-2
Vậy x=-2 để P(x)=-Q(x)
Chúc bạn học tốt.
a, Ta có: \(\dfrac{a}{a+b+c}< \dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\) (1)
\(\dfrac{b}{a+b+c}< \dfrac{b}{b+c}< \dfrac{b+a}{a+b+c}\) (1)
\(\dfrac{c}{a+b+c}< \dfrac{c}{c+a}< \dfrac{c+b}{a+b+c}\) (3)
Từ (1), (2), (3) \(\Rightarrow\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}\Rightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)
Thầy mk hướng dẫn phần a như thế còn phần b mk ko bt lm, chúc p hk tốt
câu 1.
đặt A=\(\dfrac{15}{11.14}+\dfrac{15}{14.17}+...+\dfrac{15}{65.68}+\dfrac{15}{68.71}\)
xét \(\dfrac{A}{3}\)=\(\dfrac{15}{3.11.14}+\dfrac{15}{3.14.17}+...+\dfrac{15}{3.65.68}+\dfrac{15}{3.68.71}\)
ta có:+ \(\dfrac{15}{3.11.14}=\dfrac{15}{3}\left(\dfrac{1}{11}-\dfrac{1}{14}\right)=\dfrac{15}{3.11}-\dfrac{15}{3.14}\)
tương tự ta có:
+\(\dfrac{15}{3.11.14}=\dfrac{15}{3.11}-\dfrac{15}{3.14}\)
+\(\dfrac{15}{3.14.17}=\dfrac{15}{3.14}-\dfrac{15}{3.17}\)
....
+\(\dfrac{15}{3.65.68}=\dfrac{15}{3.65}-\dfrac{15}{3.68}\)
+\(\dfrac{15}{3.68.71}=\dfrac{15}{3.68}-\dfrac{15}{3.71}\)
cộng vế theo vế ta đc:
\(\dfrac{15}{3.11.14}+\dfrac{15}{3.14.17}+...+\dfrac{15}{3.65.68}+\dfrac{15}{3.68.71}\)
=\(\dfrac{15}{3.11}-\dfrac{15}{3.14}+\dfrac{15}{3.14}-\dfrac{15}{3.17}+...+\dfrac{15}{3.65}-\dfrac{15}{3.68}+\dfrac{15}{3.68}-\dfrac{15}{3.71}=\dfrac{15}{3.11}-\dfrac{15}{3.71}\)
=> \(\dfrac{A}{3}\)=\(\dfrac{15}{3.11}-\dfrac{15}{3.71}\)
=> A= \(\dfrac{15}{11}-\dfrac{15}{17}=\dfrac{90}{187}\)
câu 1b.
trước khi làm bài này có chú ý này:\(0^n=0\)với n\(\ne0\) và \(a^0=1\)với a\(\ne0\)
đặt: \(t=\left(x-5\right)\Rightarrow\left\{{}\begin{matrix}\left(x-5\right)^{x+1}=\left(x-5\right)^{x-5+6}=t^{t+6}\\\left(x-5\right)^{x+2015}=\left(x-5\right)^{x-5+2020}=t^{t+2020}\end{matrix}\right.\)
=> \(\left(x-5\right)^{x+1}-\left(x-5\right)^{x+2015}=0\)
\(\Leftrightarrow\)\(t^{t+6}-t^{t+2020}=0\Leftrightarrow t^{t+6}\left(1-t^{2014}\right)=0\Leftrightarrow\left[{}\begin{matrix}t^{t+6}=0^{t+6}\\1-t^{2014}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=0\\t^{2014}=1=1^{2014}\Rightarrow t=1\end{matrix}\right.\)với t=0 => x-5=0=> x=5
với t=1=> x-5=1=>x=6
Với mọi x thuộc R Có (x^2-9)^2 \(\ge\) 0
[y-4] \(\ge\) 0
Suy ra (x^2-9)^2+[y-4] - 1 \(\ge\) -1
Xét A=-1 khi và chỉ khi (x^2-9)^2 và [y-4] đều bằng 0
Tự tính ra
Xin lỗi nhưng vì không biết nên mình phải dùng [ ] thay cho GTTĐ nhé
Xin lỗi nhiều tại mình o tìm được kí hiệu đó
6.(\(\dfrac{-2}{3}\))+12.\(\dfrac{-2^2}{3}\)+18.\(\dfrac{-2^3}{3}\)
= -4+(-16)+(-48)
=-68
Xét 2 t.h là ra mà bn : a âm - b dương
a dương -b âm ( loại vì thế k thỏa mãn bài )
minhf cũng làm theo cach này nhưng cô bảo là chưa chắc đã dc điểm
Ta có: \(P\left(x\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x^2+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x^2=-2\end{matrix}\right.\)
mà \(x^2\ge0\forall x\)
=> Đa thức P (x) có một nghiệm là 2.
Ta có: P(x)=0 \(\Rightarrow\left(x-2\right).\left(x^2+2\right)=0\)
=> x-2=0 hoặc \(x^2+2=0\)
+,x-2=0 => x=2 (1)
+,\(x^2+2=0\)
Với mọi giá trị của \(x\in R\) ta có: \(x^2\ge0\Rightarrow x^2+2\ge2>0\)
không tìm được giá trị nào của x để biểu thức \(x^2+2=0\) (2)
Từ (1) và (2) suy ra: x=2
Vậy nghiệm của đa thức P(x) là 2
Chúc bạn học tốt nha!!
2/ Áp dụng phép đồng dư
a) \(44^{20}:15\)
Ta có: \(44^2\equiv1\left(mod15\right)\)
\(\left(44^2\right)^{10}\equiv1^{10}\equiv1\left(mod15\right)\)
=> Số dư trong phép chia \(44^{20}\) cho 15 là 1
b) \(3^{123}:80\)
Ta có: \(3^4\equiv1\left(mod80\right)\)
\(\left(3^4\right)^{30}\equiv1^{30}\equiv1\left(mod80\right)\)
Có: \(3^{120}\cdot3^3\equiv1\cdot27\equiv27\left(mod80\right)\)
Vậy số dư trong phép chia \(3^{123}\) cho 80 là 27
1)
\(P=\left(x^2+mx+1\right)^2\) hoặc \(P=\left(x^2+mx-1\right)\) do hệ số \(x^4\) là 1; hệ số tự do là 1.
+ Với \(P=\left(x^2+mx+1\right)^2=x^4+2mx^3+\left(m^2+2\right)x^2+2mx+1=x^4+ax^3+bx^2-8x+1\)\(\Rightarrow2m=-8;a=2m;b=m^2+2\)
\(\Rightarrow m=-4;a=-8;b=18\)
+ Với\(P=\left(x^2+mx-1\right)^2=x^4+2mx^3+\left(m^2-2\right)x^2-2mx+1\)
Làm tương tự được m = 4; a = 8; b = 14