Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra: n không chia hết cho 3
=> n : 3 dư 1 hoặc dư 2
=> n2 : 3 dư 12 hoặc 22
=> n2 : 3 dư 1
=> n2 = 3k + 1 ( k thuộc N )
=> n2 + 5 = 3k + 1 + 5
= 3k + 6
= 3 ( k + 2 ) chia hết cho 3
Vậy n2 + 5 chia hết cho 3 ( Điều phải chứng minh )
Theo bài ra, ta có:
4x - 5 chia hết cho 13
=> 4x - 5 + 13 chia hết cho 13
=> 4x + 8 chia hết cho 13
=> 4 ( x + 2 ) chia hết cho 13
Mà ƯCLN ( 4; 13 ) = 1
=> x + 2 chia hết cho 13
=> x + 2 = 13k ( k thuộc N* )
=> x = 13k - 2
Vậy x = 13k - 2 ( k thuộc N* )
Bài 1:
Để 275x chia hết cho 5 => x = 0 hoặc = 5
Trường hợp 1: 2750 chia hết cho 5
2750 chia hết cho 25
2750 chia hết cho 125
Trường hợp 2: 2755 chia hết cho 5
2755 không chia hết cho 25
2755 không chia hết cho 125
=> x = 0
bài này mình làm được nhưng hơi dài lên mất khoảng 2 đến 3 phút bạn đợi mình được không ?
a, Ta có:
Đặt a=2k, b=2k+1
Suy ra ab(a+b)=2k(2k+1)(2k+2k+1) chia hết cho 2
Đặt a=2k+1; b=2k
Suy ra ab(a+b)=(2k+1)2k(2k+2k+1) chia hết cho 2
Đặt a=2k;b=2k
Suy ra ab(a+b)=2k.2k.4k chia hết cho 2
Đặt a=2k+1;b=2k+1
Suy ra ab(a+b)=(2k+1)(2k+1)(2k+1+2k+1)=2(2k+1)(2k+1)(2k+1) chia hết cho 2
Vậy ab(a+b) chia hết cho 2 với mọi a;b
Câu khác tương tự
câu c) ab+ba=10a+b+10b+a
=11a+11b
=11(a+b)
vì 11 chia hết cho 11 nên 11(a+b) chia hết cho 11
vậy ab+ ba chia hết cho 11
1)
a) 73x chia hết cho cả 2 và 5 nên x = 0
b) 7x3 chia hết cho 2 ( không thể chia hết với mọi số tự nhiên x )
c) 7x5 chia hết cho 5 - x là bất kỳ số tự nhiên nào thỏa mãn : 0<x<10
Để 11 chia hết cho n + 1 ; n+1 phải thuộc ước của 11
Sau đó bạn lập bảng ra : 11 ; -11 ; 1 ; -1