K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 2 2020

\(A=lim\frac{\sqrt{n+2}+\sqrt{n+1}}{1}=lim\left[n\left(\sqrt{1+\frac{2}{n}}+\sqrt{1+\frac{1}{n}}\right)\right]=+\infty.2=+\infty\)

\(B=lim\frac{8^3.64^n-9.27^n}{4^4.64^n+5^3.25^n}=\frac{8^3-9.\left(\frac{27}{64}\right)^n}{4^4+5^3\left(\frac{25}{64}\right)^n}=\frac{8^3}{4^4}=2\)

\(1;-\frac{1}{2};\frac{1}{4}...\) là dãy cấp số nhân lùi vô hạn có \(u_1=1\)\(q=-\frac{1}{2}\)

Do \(\left|q\right|< 1\) nên theo công thức tổng cấp số nhân:

\(S_n=\frac{u_1}{1-q}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3}\)

22 tháng 2 2020

câu tính tổng S mk làm đc oy nhé k cần lm câu đó nữa đâu

9 tháng 4 2017

a) Dễ thấy bất đẳng thức đúng với n = 2

Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là

3k > 3k + 1

Nhân hai vế của (1) vơi 3, ta được:

3k + 1 > 9k + 3 <=> 3k + 1 > 3k + 4 + 6k -1.

Vì 6k - 1 > 0 nên

3k + 1 > 3k + 4 hay 3k + 1 > 3(k + 1) + 1.

tức là bất đẳng thức đúng với n = k + 1.

Vậy 3n > 3n + 1 với mọi số tự nhiên n ≥ 2.

b) Với n = 2 thì vế trái bằng 8, vế phải bằng 7. Vậy bất đẳng thức đúng với n = 2

Giả sử bất đẳng thức đúng với n = k ≥ 2, tức là

2k + 1 > 2k + 3 (2)

Ta phải chứng minh nó cũng đúng với n= k + 1, nghĩa là phải chứng minh

2k + 2 > 2(k + 1) + 3 <=> 2k + 2 > 2k + 5

Nhân hai vế của bất đẳng thức (2) với 2, ta được:

2k + 2 > 4k + 6 <=> 2k + 2 > 2k +5 + 2k + 1.

Vì 2k + 1> 0 nên 2k + 2 > 2k + 5

Vậy 2n + 1 > 2n + 3 với mọi số tự nhiên n ≥ 2.



25 tháng 5 2017

a)
Với \(n=4\).
\(3^{n-1}=3^{4-1}=3^3=27\); \(n\left(n+2\right)=4.\left(4+2\right)=24\).
Suy ra: \(3^{n-1}>n\left(n+2\right)\) với n = 4.
Giả sử điều phải chứng minh đúng với \(n=k\).
Nghĩa là: \(3^{k-1}>k\left(k+2\right)\).
Ta sẽ chứng minh nó đúng với \(n=k+1\).
Nghĩa là:
\(3^{k+1-1}>\left(k+1\right)\left(k+1+2\right)\)\(\Leftrightarrow3^k>\left(k+1\right)\left(k+3\right)\).
Thật vậy từ giả thiết quy nạp ta có:
\(3^k=3.3^{k-1}>3k\left(k+2\right)=3k^2+6k\)\(=k^2+4k+3+2k^2+2k-3\)\(=\left(k+1\right)\left(k+3\right)+2k^2+2k-3\).
Với \(k\in N^{\circledast}\) thì \(2k^2+2k-3>0\) nên \(3^k>\left(k+1\right)\left(k+3\right)\).
Vậy điều cần chứng minh đúng với mọi \(n\ge4\).

25 tháng 5 2017

b)
Với \(n=8\)
\(2^{n-3}=2^{8-3}=2^5=32\); \(3n-1=3.8-1=23\).
Vậy điều cần chứng minh đúng với \(n=8\).
Giả sử điều cần chứng minh đúng với \(n=k\left(k\ge8\right)\).
Nghĩa là: \(2^{k-3}>3k-1\).
Ta sẽ chứng minh nó cũng đúng với \(n=k+1\).
Nghĩa là: \(2^{k+1-3}>3\left(k+1\right)-1\)\(\Leftrightarrow2^{k-2}>3k+2\).
Thật vậy \(2^{k-2}=2.2^{k-3}>2\left(3k-1\right)=6k-2\)\(=3k+2+3k-4\).
Do \(k\ge8\) nên \(k-4>0\) vì vậy \(2^{k-2}>3k+2\).
Vậy điều cần chứng minh đúng với mọi \(n\ge8\).

20 tháng 11 2018

Chọn A.

Ta thấy S là tổng của 2019 số hạng đầu tiên của cấp số nhân với số hạng đầu là

u1 = 1, công bội q = 3.

Áp dụng công thức tính tổng của cấp số nhân ta có

S = 3 2019 - 1 2

NV
24 tháng 12 2020

\(\dfrac{u_{n+1}}{n+1}=3.\dfrac{u_n}{n}\)

Đặt \(\dfrac{u_n}{n}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{3}\\v_{n+1}=3v_n\end{matrix}\right.\)

\(\Rightarrow v_n=\dfrac{1}{3}.3^{n-1}=3^{n-2}\)

\(\Rightarrow S=3^{-1}+3^0+...+3^8=...\)

NV
8 tháng 3 2020

\(A=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(2x-1\right)}{x-2}=\lim\limits_{x\rightarrow2}\left(2x-1\right)=3\)

\(B=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^2-2x+3\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\frac{x^2-2x+3}{x+1}=\frac{1-2+3}{1+1}=1\)

\(C=\lim\limits_{x\rightarrow2}\frac{x^2+2x}{x^2+4x+4}=\frac{4+4}{4+8+4}=\frac{1}{2}\)

\(D=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^2-1\right)}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow1}\frac{x^2-1}{x-2}=\frac{0}{-1}=0\)

\(E=\lim\limits_{x\rightarrow1}\frac{x^3-5x^2+3x+9}{x^4-8x^4-9}=\frac{1-5+3+9}{1-8-9}=-\frac{1}{2}\)

NV
8 tháng 3 2020

\(F=\lim\limits_{x\rightarrow-1}\frac{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}{\left(x+1\right)\left(x^2-3x+3\right)}=\lim\limits_{x\rightarrow-1}\frac{\left(x-1\right)\left(x^2+1\right)}{x^2-3x+3}=\frac{-2.2}{1+3+3}=-\frac{2}{5}\)

\(G=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(2x+1\right)}=\lim\limits_{x\rightarrow1}\frac{x+3}{2x+1}=\frac{4}{3}\)

\(H=\lim\limits_{x\rightarrow-2}\frac{\left(x+2\right)\left(x-1\right)^2}{\left(2-x\right)\left(x+2\right)}=\lim\limits_{x\rightarrow-2}\frac{\left(x-1\right)^2}{2-x}=\frac{9}{4}\)

\(I=\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+1}{x^2-1}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4}{2x}=\frac{24-25}{2}=-\frac{1}{2}\)

\(K=\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)