\(\sqrt{x+9}=7\)

b) \(\sqrt{x-4}=...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

â) \(\sqrt{x+9}=7\\ \Rightarrow x+9=49\\ \Rightarrow x=40\)

b) \(\sqrt{x-4}=4-x\\ \Rightarrow x-4=16-8x+x^2\\ \Rightarrow x^2-9x+20=0\\ \Rightarrow\left(x-4\right)\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

c) \(\sqrt{x^2-12x+36}=81\\ \Rightarrow x-6=81\\ \Rightarrow x=87\)

a: Ta có: \(\sqrt{x+9}=7\)

\(\Leftrightarrow x+9=49\)

hay x=40

b: Ta có: \(\sqrt{x-4}=4-x\)

\(\Leftrightarrow\left(x-4\right)^2-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=5\left(loại\right)\end{matrix}\right.\)

c: Ta có: \(\sqrt{x^2-12x+36}=81\)

\(\Leftrightarrow\left|x-6\right|=81\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=81\\x-6=-81\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=87\\x=-75\end{matrix}\right.\)

30 tháng 11 2016

a)\(\sqrt{x+9}=7\)

Đk:\(x\ge-9\).Bình phương 2 vế của pt ta có:

\(\sqrt{\left(x+9\right)^2}=7^2\)\(\Leftrightarrow x+9=49\Leftrightarrow x=40\)

b)\(\sqrt{x^2-12x+36}=81\)

Đk:\(x\ge6\)

\(\Leftrightarrow\sqrt{\left(x-6\right)^2}=81\)

\(\Leftrightarrow x-6=81\Leftrightarrow x=87\)

c)\(\sqrt{x-1}=4\)

Đk:\(x\ge1\).Bình phương 2 vế của pt ta có:

\(\sqrt{\left(x-1\right)^2}=4^2\)

\(\Leftrightarrow x-1=16\Leftrightarrow x=17\)

NV
9 tháng 7 2019

a/ \(=\sqrt{\sqrt{2}-1}-\left(\sqrt{2}-1\right)\sqrt{\sqrt{2}+1}\)

\(=\sqrt{\sqrt{2}-1}\left(1-\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\right)\)

\(=2\sqrt{\sqrt{2}-1}\)

b/ \(\Leftrightarrow x^2-12x+36=6561\)

\(\Leftrightarrow x^2-12x-6525=0\)

\(\Leftrightarrow\left(x-87\right)\left(x+75\right)=0\Rightarrow\left[{}\begin{matrix}x=87\\x=-75\end{matrix}\right.\)

c/ \(\Leftrightarrow4x^2-12x+9=49\)

\(\Leftrightarrow4x^2-12x-40=0\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Hai câu b; c đều có thể giải bằng cách sử dụng hằng đẳng thức, nhưng cần phá trị tuyệt đối tốn thời gian, tốt nhất là bình phương cho lẹ

9 tháng 7 2019

\(\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}-\sqrt{2\sqrt{2}+2}\)

\(Đat:A=\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}\Rightarrow A^2=\sqrt{2}-1+\sqrt{2}+1+2\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=2\sqrt{2}+2=2\left(\sqrt{2}+1\right)\Rightarrow A=\sqrt{2\sqrt{2}+2}\left(vì:\sqrt{\sqrt{2}-1};\sqrt{\sqrt{2}+1}>0\right)\) \(\Rightarrow\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}-\sqrt{2\sqrt{2}+2}=\sqrt{2\sqrt{2}+2}-\sqrt{2\sqrt{2}+2}=0\)

\(b,\sqrt{x^2-12x+36}=\sqrt{\left(x-6\right)^2}=\left|x-6\right|=81\Leftrightarrow\left[{}\begin{matrix}x-6=81\\x-6=-81\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=87\\x=-75\end{matrix}\right..Vậy:x\in\left\{87;-75\right\}\)

\(c,\sqrt{4x^2-12x+9}=\sqrt{\left(2x-3\right)^2}=7\Leftrightarrow\left|2x-3\right|=7\Leftrightarrow\left[{}\begin{matrix}2x-3=-7\\2x-3=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-4\\2x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right..Vậy:x\in\left\{-2;5\right\}\)

24 tháng 8 2020

Lần sau đăng tách ra

24 tháng 8 2020

Cảm ơn bạn nhiều

20 tháng 9 2016

câu d tách hđt r đánh giá . VP=(x-6)^2+2>=2 còn VP <=2 =>....
câu c tương tự 
câu b c bình phương oặc đặt ẩn :3

29 tháng 10 2020

a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2

Do đó VT=VP khi x=2

29 tháng 10 2020

b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu ĐK  của t

\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)

18 tháng 8 2019

a)...ghi lại đề...

\(\Leftrightarrow\sqrt{x^2-x-2x+2}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x\left(x-1\right)-2\left(x-1\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-2}\cdot\sqrt{x-1}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-2}=\frac{\sqrt{x-1}}{\sqrt{x-1}}=1\)

\(\Leftrightarrow\sqrt{x-2}^2=1^2\)

\(\Leftrightarrow x-2=1\)(Vì \(x-2\ge0\Leftrightarrow x\ge2\))

\(\Leftrightarrow x=3\)

\(\)

18 tháng 8 2019

\(a,\sqrt{x^2-3x+2}=\sqrt{x-1}\)

\(\Rightarrow x^2-3x+2=x-1\)

\(\Rightarrow x^2-4x+3=0\)

\(\Rightarrow x^2-x-3x+3=0\)

\(\Rightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)

Vậy..........

20 tháng 8 2019

\(a,\sqrt{x+1}=\sqrt{2-x}\)

\(\Rightarrow x+1=2-x\)

\(\Rightarrow2x=1\)

\(\Rightarrow x=\frac{1}{2}\)

21 tháng 10 2020

a) \(ĐKXĐ:-1\le x\le2\)

Bình phương 2 vế ta có: 

\(x+1=2-x\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)( đpcm )

Vậy \(x=\frac{1}{2}\)

b) \(ĐKXĐ:x\ge1\)

\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}+\sqrt{x-1}=16\)

\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

\(\Leftrightarrow2\sqrt{x-1}=16\)\(\Leftrightarrow\sqrt{x-1}=8\)

\(\Leftrightarrow x-1=64\)\(\Leftrightarrow x=65\)( thỏa mãn ĐKXĐ )

Vậy \(x=65\)

c) \(ĐKXĐ:x\ge1\)

\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)

\(\Leftrightarrow\sqrt{16\left(x-1\right)}-\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}+\sqrt{x-1}=8\)

\(\Leftrightarrow4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)

\(\Leftrightarrow4\sqrt{x-1}=8\)\(\Leftrightarrow\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)\(\Leftrightarrow x=5\)( thỏa mãn ĐKXĐ )

Vậy \(x=5\)