Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Bai 3 :
N M P 20 25
Áp dụng định lí Py - ta - go vào \(\Delta MNP\)vuông tại N:
MP2 = NP2 + MN2
252 = NP2 + 202
=> NP2 = 625 - 400
=> NP2 = 225
=> NP = 15
Bài 3 :
D E F
Ta có :
EF2 = 262 = 676
DE2 + DF2 = 102 + 242 = 676
=> EF2 = DE2 + DF2
Vậy \(\Delta EDF\) là tam giác vuông tại D
a ) AH là phân giác của \(\widehat{BAC}\)
\(\Rightarrow\widehat{EAH}=\widehat{FAH}\)
Xét 2 tam giác vuông ΔEAH và ΔFAH có:
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
=> ΔEAH = ΔFAH (cạnh góc vuông - góc nhọn)
=> EH = FH (đpcm)
b ) \(\widehat{ACB}\) là góc ngoài tại C của ΔMCF
\(\Rightarrow\widehat{ACB}=\widehat{CFM}+\widehat{CMF}\)
\(\widehat{AEF}\) là góc ngoài tại E của ΔMBE
\(\Rightarrow\widehat{AEF}=\widehat{EMB}+\widehat{ABC}\)
Lại có : \(\widehat{CFM}=\widehat{AEF}\) (do ΔEAH = ΔFAH)
\(\Rightarrow\widehat{ACB}=\widehat{EMB}+\widehat{ABC}+\widehat{CMF}\)
Mặt khác \(\widehat{EMB}=\widehat{CMF}\) (đối đỉnh)
\(\Rightarrow\widehat{ACB}=2.\widehat{EMB}+\widehat{ABC}\)
Hay \(2.\widehat{BME}=\widehat{ACB}-\widehat{ABC}\)( ĐPCM )
c, ΔAHE vuông tại H
\(\Rightarrow HE^2+AH^2=AE^2\)
ΔEAH = ΔFAH ⇒ HE = HF => H là trung điểm của FE
\(\Rightarrow HE=\frac{FE}{2}\)
\(\Rightarrow HE^2=\left(\frac{FE}{2}\right)^2=\frac{FE^2}{4}\)
\(\Rightarrow\frac{FE^2}{4}+AH^2=AE^2\left(đpcm\right)\)
, Qua C kẻ đường thẳng song song với AB cắt EF ở D.
CD ║ AB \(\Rightarrow\widehat{CDF}=\widehat{AEH}\) (đồng vị)
mà \(\widehat{AFH\:}=\widehat{AEH}\)(ΔEAH = ΔFAH)
\(\Rightarrow\widehat{CDF}=\widehat{AFH\:}\)
=> ΔCDF cân tại C
=> CD = CF
Dễ dàng chứng minh được ΔMBE = ΔMCD (g.c.g)
⇒ BE = CD mà CD = CF
⇒ BE = CF (đpcm)
a. Xét tam giác BAE và tam giác BHE có:
BA=BH
BE chung
góc ABE=HBE ( phân giác BE )
=> tam giác BAE = tam giác BHE (c.g.c)
=> góc BAE=BHE ( 2 góc tương ứng)
mà góc BAE= 90 độ
=> góc BHE=90 độ => EH ⊥BC .
b.tam giác BAE = tam giác BHE => BA=BH và AE=EH
=> BE là đường trung trực của AH
c.Xét tam giác AKE và tam giác HCE có:
góc AEK=HEC ( đối đỉnh)
AE=EH
góc EAK=EHC (= 90 độ)
=> tam giác AKE = tam giác HCE (g.c.g)
=> EK=EC
d.Có: BA=BH => tam giác BAH cân tại B
=> góc BHA= 180 độ - góc HBA / 2 (1)
Có: BC=BH+HC
BK=BA+AK
mà BH=BA
HC=AK ( do tam giác AKE = tam giác HCE )
=> BC=BK => tam giác BCK cân tại B
=> góc BCK=180 độ - góc HBA /2 (2)
Từ (1) (2) => góc BHA=BCK
mà 2 góc ở vị trí đồng vị
=> AH//CK
e. Xét tam giác BMC và tam giác BMK có:
BC=BK
CM=KM ( M là trung điểm của KC )
BM chung
=> tam giác BMC = tam giác BMK (c.c.c)
=> góc MBC=MBK => BM là tia phân giác của góc B
mà BE cũng là phân giác của góc B
=> ba điểm B, E, M thẳng hàng.
Cho góc xOy = 120 độ, vẽ OA là tia phân giác của góc xOy.Kẻ AB vuông góc với Ox,AC vuông góc với Oy sao cho AB = AC.
a,Chứng minh AB = AC.
b,Tính số đo góc CAO
c,Tam giác ABC là tam giác gì ? Vì sao ?
d,Cho AO = 25 cm, AC =20 cm.Tính độ dài cạnh BO
e,Tính số đo góc CBO?
g,Chứng minh AO là đường trung trực của BC?
Các bạn giúp mình với,huhu