\(\widehat{xOy}\)nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=O...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:Cho góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB.Trên tia Ax lấy điểm C,trên tia By lấy điểm D sao cho AC=BDa) Chứng minh:AD=BCb) Gọi E là giao điểm AD và Bc.Chứng minh:\(\Delta EAC=\Delta EBD\)c) Chứng minh:OE là phân giác của góc xOyBài 2:Cho \(\Delta ABC\)có \(\widehat{A}=90^o\).Kẻ AH vuông góc với BC \(\left(H\varepsilon BC\right)\).Trên đường thẳng vuông góc với BC tại B lấy điểm D...
Đọc tiếp

Bài 1:

Cho góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB.Trên tia Ax lấy điểm C,trên tia By lấy điểm D sao cho AC=BD

a) Chứng minh:AD=BC

b) Gọi E là giao điểm AD và Bc.Chứng minh:\(\Delta EAC=\Delta EBD\)

c) Chứng minh:OE là phân giác của góc xOy

Bài 2:

Cho \(\Delta ABC\)có \(\widehat{A}=90^o\).Kẻ AH vuông góc với BC \(\left(H\varepsilon BC\right)\).Trên đường thẳng vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao  cho BD=AH

Chứng minh rằng:

a) \(\Delta AHB=\Delta DBH\)

b) AB//DH

c) Tính \(\widehat{ACB}\),biết \(\widehat{BAH=35^o}\)

Bài 3:

Cho \(\overline{\Delta}ABC\) vuông tại A có \(\overline{\Delta}B=30^o\)

a) Tính \(\Delta C\)

b) Vẽ tia phân giác của góc C cắt cạnh AB tại D

c) Trên cạnh CB lấy điểm M sao cho CM=CA.Chứng minh \(\Delta ACD=\Delta MCD\)

d) Qua C vẽ đường thẳng xy vuông góc CA.Từ A kẻ đường thẳng song song với CD cắt xy ở K.Chứng minh:AK=CD

e) Tính \(\DeltaẠKC\)

Bài 4:

Cho tam giác ABC vuông tại A,có AB=AC.Gọi K là trung điểm của cạnh BC

a) Chứng minh \(\Delta AKB=\Delta AKC\)và \(AK⊥BC\)

b) Từ C kẻ đường vuông góc với BC,nó cắt AB tại E.Chứng minh EC//AK

c) Chứng minh CE=CB

0
BTVN đây , nhờ mọi người giải giùm:1/.Cho tam giác ABC cân A, góc A nhỏ hơn 90' , Vẽ BD\(\perp\)AC; CE\(\perp\)AB , gọi H là giao điểmcủa BD và CE.CMR:a,\(\Delta\)ABD = \(\Delta\)ACEb, \(\Delta AED\)cânc, AH là đường trung trực của ED.d, Trên tia đối của tia DB lấy điểm K sao cho DK = DB. C/m :\(\widehat{ECB}\)= \(\widehat{DKC}\)2/.Cho tam giác ABC cân A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy...
Đọc tiếp

BTVN đây , nhờ mọi người giải giùm:

1/.Cho tam giác ABC cân A, góc A nhỏ hơn 90' , Vẽ BD\(\perp\)AC; CE\(\perp\)AB , gọi H là giao điểmcủa BD và CE.CMR:

a,\(\Delta\)ABD = \(\Delta\)ACE

b, \(\Delta AED\)cân

c, AH là đường trung trực của ED.

d, Trên tia đối của tia DB lấy điểm K sao cho DK = DB. C/m :\(\widehat{ECB}\)\(\widehat{DKC}\)

2/.Cho tam giác ABC cân A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD=CE. Vẽ DH, EK \(\perp\)BC. CMR: a, HB=CK

b, \(\widehat{AHB}\)\(\widehat{AKC}\)

c,HK // DE

d. \(\Delta AHE\)\(\Delta AKD\)

3/ Cho \(\widehat{xOy}\)và tia phân giác Ot. Trên tia Ot lấy điểm M, trên các tia Õ và Oy lần lượt lấy các điểm A và B sao cho OA=OB. Gọi H là giao điểm của Ab và Ot.CMR:

a, MA = Mb

b, OM là trung trực của AB

c, Cho AB = 6cm, OA=5cm. Tính OH

( Ko gấp lắm nên từ từ giải rõ ràng, đúng kết quả nhé)

 

3
11 tháng 2 2018

1) đề có phải là: Cho tam giác ABC cân tại A, góc A nhỏ hơn 90 độ. Vẽ BD vuông AC và CE vuông AB. H là giao điểm của BD và CE.
a) Chứng minh Tam giác ABD = Tam giác ACE
b) Chứng minh tam giác AED cân
c, AH là đường trung trực của ED.
D) Trên tia đối DB lấy K sao cho DK = DB. Chứng minh góc ECB = Góc DKC

A B C D E H K

a) Xét tam giác ABD và tam giác ACE có:

\(\widehat{ACE}=\widehat{ABD}\left(cùngphuvoi\widehat{BAC}\right)\Rightarrow\Delta ABD=\Delta ACE\left(g.c.g\right)\hept{\begin{cases}AC=AB\left(\Delta ABCcântạiA\right)\\\widehat{BAC}chung\\\widehat{AEC}=\widehat{ADB}=90^o\end{cases}}\)

b) AE=AD(vì tam giác ABD=tam giác ACE 

=> tam giác AED cân tại A 

c) Xem lại đề

d) Xét tam giác BCK có:

\(\hept{\begin{cases}BK\perp DC\\BD=DK\end{cases}}\)

=> CD là đường trung trực của BK

=> BC=CK

=> tam giác BCK cân tại C

=>\(\widehat{CBK}=\widehat{CKB}\)

Mà \(\widehat{ECB}=\widehat{CBK}\)(vì góc ABC=góc ACB; góc ABD= góc ACE)

=> góc ECB= góc CKB 

11 tháng 2 2018

3) Đề là: 

Cho góc xOy, vẽ tia phân giác Ot của góc xOy. Trên tia Ot lấy điểm M bất kì, trên tia Ox và Oy lần lượt lấy các điểm A và B sao cho OA = OB gọi H là giao điểm của AB và Ot . CHỨNG MINH: 
a/ MA = MB 
b/ OM là đường trung trực của AB 
c/ Cho biết AB = 6cm; OA= 5cm. Tính OH ?  (bn viết khó hiểu qá nên mk xem lại trong vở)

Tự vẽ hình!

a/ Xét tam giác OAM và tam giác OBM, có:

Cạnh OM là cạnh chung

OA = OB (gt)

góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)

=> Tam giác OAM = tam giác OBM (c.g.c)

=> MA = MB ( 2 cạnh tương ứng)

b/ Ta có: MA = MB (cmt)

=> Tam giác AMB là tam giác cân

=> Góc MAH = góc MBH

Xét tam giác AMH và tam giác BMH, có:

góc MAH = góc MBH ( cmt)

MA = MB ( cmt)

góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)

=> tam giác AMH và tam giác BMH ( g.c.g)

=> AH = HB ( 2 cạnh tương ứng)

=> H là trung điểm của AB (1)

Vì tam giác AMH = tam giác BMH (cmt)

=>góc MHA = góc MHB ( 2 góc tương ứng)

mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)

=> góc MHA = góc MHB= 180 độ : 2 = 90 độ

=> MH vuông góc với AB (2)

Từ (1) và (2)

=> MH là đường trung trực của AB

=> OM là đường trung trực của AB ( vì H thuộc OM )

c/ Vì H là trung điểm của AB (cmt)

=> AH =HB = AB : 2 = 6 :2 = 3 (cm)

Xét tam giác OAH vuông tại H  có: OA2 = OH2 + AH2 ( định lí Py-ta-go)

=> 52 = OH2 + 32 

=> 25 = OH2 + 9

=> OH2 = 25 - 9

=> OH2 = 16

\(\Rightarrow OH=\sqrt{16}\)

\(\Rightarrow OH=4cm\)

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.a) CMR: tam giác ADE cânb)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.d) CMR: HK // BCe) cho HB cắt CK ở N. CMR: A,M,N thẳng hàngbài 2: cho tam giác abc vuông cân tại a , d là đường...
Đọc tiếp

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.

a) CMR: tam giác ADE cân

b)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.

c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.

d) CMR: HK // BC

e) cho HB cắt CK ở N. CMR: A,M,N thẳng hàng

bài 2: cho tam giác abc vuông cân tại a , d là đường thẳng bất kỳ qua a ( d không cắt đoạn bc). từ b và c kẻ bd và ce cùng vuông góc với d.

a)CMR: bd // ce

b)CMR: \(\Delta adb\)\(\Delta cea\)

c)CMR: bd + ce = de

d)gọi m là trung điểm của bc.CMR: \(\Delta dam\)\(\Delta ecm\)và tam giác dme vuông cân

bài 3: cho tam giác abc cân tại A (\(\widehat{a}\)< 45o), lấy m\(\in\)bc. từ m kẻ mh // ab (h\(\in\)ac), kẻ mi // ac (i\(\in\)ab).

a)CMR: \(\Delta aih\)=\(\Delta mhi\)

b)CMR: ai = hc

c)Lấy N sao cho hi là trung trực của mn. CMR: in = ib

0
Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0
Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0