Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.
=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp
- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:
n.( n+1). ( n+2) \(⋮\)2.
- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.
Mà 2 và 3 là hai số nguyên tố cùng nhau.
Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).
2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.
=> 3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22
= 3n. (27+3) + 2n . ( 8+4)
= 6. ( 3n . 5 + 2n . 2)
= 6k với k = 3n . 5 + 2n+1
Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).
3) a) ( 6100 - 1) \(⋮\) 5
b) 2120 - 1110 chia hết cho cả 2 và 5
a) ( 6100 - 1) \(⋮\)5
=> Số 6100 có chữ số tận cùng là 6.
Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)
=> ( 6100 - 1) \(⋮\)5(đpcm).
b) 2120 - 1110 chia hết cho cả 2 và 5.
=> Số 2120 có chữ số tận cùng là 1.
Số 1110 có chữ số tận cùng cũng là 1.
Nên 2120 - 1110 là số có chữ số tận cùng là 0.
=> 2120 - 1110 chia hết cho 2 và 5(đpcm).
4) Chứng minh rằng:
a) ( 450+108+180) \(⋮\)9
b) ( 1350 +735+255) \(⋮\)5
c) ( 32624+2016) \(⋮\)4
a) ( 450+108+180) \(⋮\)9
=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9
Nên ( 450+108+180) \(⋮\)9.
b) ( 1350+735+255) \(⋮\)5
=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5
Nên ( 1350+735+255) \(⋮\)5.
c) ( 32624 + 2016) \(⋮\) 4
=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4
Nên ( 32624 + 2016) \(⋮\)4.
Đây là câu trả lời của mình, mình chúc bạn học tốt!
\(\left(7a+3b\right)⋮23\Leftrightarrow17\left(7a+3b\right)⋮23\)(vì \(\left(17,23\right)=1\))
\(\Leftrightarrow\left(119a+51b\right)⋮23\Leftrightarrow\left(119a-5.23a+51-2.23b\right)⋮23\)
\(\Leftrightarrow\left(4a+5b\right)⋮23\)
Do ta biến đổi tương đương nên điều ngược lại cũng đúng.
\(S=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1997}+3^{1998}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{1997}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{1997}\right)⋮2\)
\(S=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{1996}\right)⋮13\).
Mà \(\left(2,13\right)=1\)nên \(S\)chia hết cho \(2.13=26\).
4,Tìm a, b ∈N, biết:
a,10a+168=b2
b,100a+63=b2
c,2a+124=5b
d,2a+80=3b
Giải:
a) xét \(a=0\)
\(\Rightarrow10^a+168=1+168=169=13^2\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)
xét \(a\ne0\)
=>10a có tận cùng bằng 0
Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9 )
=>không có b
vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)
b)Chứng minh tương tự câu a)
c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5
\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5
Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0
ta có :
2^0 + 124 = 5^b
=> 125 = 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b =3
d)Chứng minh tương tự như 2 câu mẫu trên
3,Cho B=34n+3+2013
Chứng minh rằng B⋮10 với mọi n∈N
Giải:
Ta có :
34n+3+2013
=(34)n+27+2013
=81n+2040
Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc
3,
b, Có : abcd = 100ab + cd
= 100.2.cd + cd
= 200cd + cd
= ( 200 + 1 ). cd
= 201. cd
= 3.67 + cd
suy ra abcd chia hết cho 67.
a, Có : abc = abc0
abc0 = 1000a + bc0
= 999a + a + bc0
= 999a + bca
= 27.37a + bca
Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27
suy ra 27. 37a + bca chia hết cho 27
suy ra bca chia hết cho 27.
a)Ta có:
S = 2 + 22 + 23 +........+ 2100
=> S = (2+23) + (22+24) +............+ (298+2100)
S = 2(1+22) + 22(1+22) +.......... + 298(1+22)
S = (1+22).(2+22+.......+298)
S=5.(2+22+.......+298) chia hết cho 5 (đpcm)
Vậy S chia hết cho 5
b) Ta có
4a+3b=4a+7b-4b=4(a-b)+7b
Vì a-b chia hết cho 7 nên 4(a-b) chia hết cho 7 và 7b chia hết cho 7(vì có 1 thừa số là 7) nên 4(a-b)+7b chia hết cho 7
=>4a+3b chia hết cho 7(đpcm)
Vậy nếu a-b chia hết cho 7 thì 4a+3b sẽ chia hết cho 7.
1,
a, Để \(\frac{8}{x+2}\) nhận giá trị là số tự nhiên \(\Rightarrow\)\(8⋮x+2\Rightarrow x+2\in\text{Ư}\left(8\right)=\left\{1;2;4;8\right\}\)
\(\Rightarrow x\in\left\{-1;0;2;6\right\}\)
Vì \(x\in N\Rightarrow x\in\text{ }\left\{0;2;6\right\}\)
Vậy \(x\in\left\{0;2;6\right\}\)
b, Để \(\frac{x+3}{x+1}\) nhận giá trị là số tự nhiên\(\Rightarrow\left\{{}\begin{matrix}x+3⋮x+1\\x+1⋮x+1\end{matrix}\right.\Rightarrow x+3-x+1⋮x+1\Rightarrow2⋮x+1\)
\(\Rightarrow x+1\in\text{Ư}\left(2\right)=\left\{1;2\right\}\)\(\Rightarrow x\in\left\{0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\)
- Bài 2:
b) S = 1 + 2 + 22 +.... + 211
= (1+23) + (2 + 24) +..... + (28+ 211)
= (1+23) + 2(1+23)+....+28(1+23)
= 9 + 2.9 + .... + 28.9
= 9.(1+2+...+28) ⋮ 9
Vậy S ⋮ 9
đó giúp mk đi mà
à, mk quên chưa nói là ai giúp mk sẽ được luôn 2SP đó
giúp mk nha
cảm ơn nhiều!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
https://hoc247.net/hoi-dap/toan-6/chung-minh-s-1-2-2-2-2-3-2-4-2-5-2-6-2-7-chia-het-cho-3-faq250754.html
S= \(1+2+2^2+...+2^7\)
2S= \(2\cdot\left(2+2^2+...+2^7\right)\)
2S= \(2^1+2^2+...2^8\)
1S= 2S - S = \(\left(2^1+2^2+...2^8\right)-\left(1+2+2^2+...+2^7\right)\)
1S= \(2^1+2^2+...+2^8-1-2-2^2-...-2^7\)
1S= \(2^8-1\)
1S= \(256-1\)
1S= 255
=> 1S chia hết cho 3
Mà 1S= S
=> S chia hết cho 3
Vậy S chia hết cho 3
S=22+23+24+...+22003+22004
2S=23+24+25+...+22004+22005
2S—S=(23+24+25+...+22004+22005)—(22+23+24+...+22003+22004)
S=22005—22
Còn lại tự làm
Ta có : S=2+22+23+....+22004(1)
2S=(2+22+.....+22004).2
2S=22+23+.....+22005(2)
=>(2)-(1)=2S-S=(22+23+......+22005)-(2+22+.....+22004)
S=22005-2
BAN DAT LAM THIEU DO