\(x^2-\left(2m+1\right)x+m^2+m-6=0\).
Tìm m để phương trìn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 5 2019

Lời giải:

1.

Để pt có 2 nghiệm phân biệt thì:

\(\Delta=(2m-1)^2-4(m^2-1)=5-4m>0\)

\(\Leftrightarrow m< \frac{5}{4}\)

2.

Với \(m< \frac{5}{4}\), áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2m-1\\ x_1x_2=m^2-1\end{matrix}\right.\)

Khi đó:

\((x_1-x_2)^2=x_1-3x_2\)

\(\Leftrightarrow (x_1+x_2)^2-4x_1x_2=(x_1+x_2)-4x_2\)

\(\Leftrightarrow (2m-1)^2-4(m^2-1)=2m-1-4x_2\)

\(\Leftrightarrow 5-4m=2m-1-4x_2\)

\(\Leftrightarrow x_2=\frac{3-3m}{2}\)

\(\Rightarrow x_1=2m-1-x_2=\frac{7m-5}{2}\)

\(\Rightarrow x_1x_2=\frac{(3-3m)(7m-5)}{4}=m^2-1\)

\(\Rightarrow \left[\begin{matrix} m=\frac{11}{25}\\ m=1\end{matrix}\right.\) (giải pt bậc 2 đơn giản)

Thử lại thấy thỏa mãn. Vậy..........

\(\Rightarrow \)

AH
Akai Haruma
Giáo viên
29 tháng 1 2020

Lời giải:

Để pt có 2 nghiệm phân biệt thì $\Delta'>0$

$\Leftrightarrow m^2>0\Leftrightarrow m\neq 0$

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=-m^2+4\end{matrix}\right.\)

Khi đó:
\(x_1^3+4x_1^2=x_2=-4-x_1\)

\(\Leftrightarrow x_1(x_1^2+1)+4(x_1^2+1)=0\)

\(\Leftrightarrow (x_1+4)(x_1^2+1)=0\)

\(\Rightarrow x_1=-4\)

\(\Rightarrow x_2=-4-x_1=0\)

\(\Rightarrow x_1x_2=0\)

\(\Leftrightarrow -m^2+4=0\Leftrightarrow m=\pm 2\) (thỏa mãn)

Vậy........

29 tháng 1 2020

mk làm đc r mọi ng ơi cho xin kết quả để so ạ

7 tháng 1 2016

giải  pt tìm  x1 ; x 2 theo m

sau đó giải BPT tìm m  thối.x1>1 và x2 < 6

7 tháng 1 2016

denta= (2m-3)^2 -4(m^2-3m)=9>0 => pt luôn có 2 nghiệm phân biệt với mọi x 
*x1=[2m-3+9]/2=m+3 
*x2=[2m-3-9]/2=m-6 
Theo bài ra ta có: hai nghiệm x1, x2 cùng dương <=> P>0 và S>0 
=> m>3 thì hai nghiệm x1, x2 luôn cùng dương.

22 tháng 6 2015

a, với m = - 60 ta có:

 x^2 - 4x - 60 = 0

=> x^2  + 6x - 10 x - 60 = 0

=> x(x + 6) - 10 ( x+6) = 0

=> ( x -10)( x + 6) = 0

=> x = 10 hoặc x = -6

4 tháng 5 2017

\(\Delta=\)(m+1)\(^2\)- 1.(m-4) =\(m^2+2m+1\)\(-m+4\)=m\(^2\)+m+5>0 với mọi m

Gọi \(x_1,x_2\)là nghiệm của phương trình (1)

theo hệ thức Vi-ét ta có \(x_1+x_2=2\left(m+1\right)\);\(x_1.x_2=\)m-4

B=\(x_1\left(1-x_2\right)+x_2\left(1-x_1\right)=x_1-x_1x_2+x_2-x_1x_2=2\left(m+1\right)-2.\left(m-4\right)=2m-2m+2+8=10\)

=> B không phụ thuộc vào m

4 tháng 5 2017

không có gì

AH
Akai Haruma
Giáo viên
22 tháng 5 2018

Lời giải:

Ta có:

\(\Delta'=(m+3)^2-(m-1)=m^2+5m+10=(m+\frac{5}{2})^2+\frac{15}{4}>0\) với mọi $m\in\mathbb{R}$ nên pt luôn có hai nghiệm phân biệt với mọi $m\in\mathbb{R}$

Áp dụng định lý Viete ta có: \(\left\{\begin{matrix} x_1+x_2=2(m+3)\\ x_1x_2=m-1\end{matrix}\right.\)

Khi đó:

\(|x_1|-|x_2|=6\)

\(\Rightarrow (|x_1|-|x_2|)^2=36\)

\(\Leftrightarrow x_1^2+x_2^2-2|x_1x_2|=36\)

\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2-2|x_1x_2|=36\)

\(\Leftrightarrow 4(m+3)^2-2(m-1)-2|m-1|=36\)

Qua việc xét \(m\geq 1, m< 1\) ta thu được nghiệm của pt trên là \(m=-6\)

Thử lại thấy thỏa mãn.

9 tháng 1 2016

dùng hệ thức vi ét để biến đổi a/A= -3m^2 +2m +32=-3(m^2-2/3.m-32/3)=-3(m-1/3)^2-95/3 <= -95/3

                                            b/B=(2m+8)^2-3(m^2-8) rồi làm tương tự