\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a,Rút gọn biểu thức 
b,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

a. Ta có biến đổi:

\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)

b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)

Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.

23 tháng 6 2015

Cau a : \(A=\frac{a^2\left(a+2\right)-1}{a^2\left(a+2\right)+2a-1}\) => \(A=\frac{-1}{2a-1}\)

Cau b: Neu a la so nguyen thi 2a -1 chac chan phai chia het cho 1 , con tu so la -1 thi da chia het cho 1 roi => day la phan so toi gian

10 tháng 5 2017

a/ \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left[a+1\right]\left[a^2+a-1\right]}{\left[a+1\right]\left[a^2+a+1\right]}=\frac{a^2+a-1}{a^2+a+1}\)

 b.Gọi d là ước chung lớn nhất của a2 + a – 1 và a2+a +1.

Vì a2 + a – 1 = a(a+1) – 1 là số lẻ nên d là số lẻ

Mặt khác, 2 = [ a2+a +1 – (a2 + a – 1) ] d

Nên d = 1 tức là a2 + a + 1 và a2 + a – 1 nguyên tố cùng nhau.

 Vậy biểu thức A là phân số tối giản.

21 tháng 6 2016

a) Ta có: \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

Điều kiện đúng A -1

Rút gọn đúng cho.

b) Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1\)\(a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left(a^2+a+1-\left(a^2+a-1\right)\right)\):d

Nên d = 1 tức là \(a^2+a+1\)\(a^2+a-1\)là nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.

21 tháng 6 2016

thực sự là toán lớp 6 ko ?

?"

19 tháng 10 2016

a. \(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b. Trước hết ta nhận xét: \(\hept{\begin{cases}a^2+a-1=a\left(a+1\right)-1\\a^2+a+1=a\left(a+1\right)+1\end{cases}}\). Vì a(a + 1) là số chẵn nên cả hai số trên đều không chia hết cho 2.

Gọi d là ƯCLN của \(a^2+a-1\) và \(a^2+a+1\). Khi đó d khác 2 và \(a^2+a-1-\left(a^2+1+1\right)=-2\) chia hết d. Do d max và d khác 2 nên d = 1.

Vậy với a nguyên thì phân số \(A=\frac{a^2+a-1}{a^2+a+1}\) tối giản.

4 tháng 2 2019

a. Ta có biến đổi:

\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)

b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)

Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.

4 tháng 2 2019

a. Ta có biến đổi:

\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)

b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)

Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.

4 tháng 2 2019

cái này rất dễ mình tin bạn có thể giải được mà