Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Gọi ba số được chia lần lượt là a, b và c
Theo đề ra, ta có:
\(a+b+c=230\)
Và \(\hept{\begin{cases}a\cdot\frac{1}{3}=b\cdot\frac{1}{2}\\a\cdot\frac{1}{5}=c\cdot\frac{1}{7}\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{a}{3}=\frac{b}{2}\\\frac{a}{5}=\frac{c}{7}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{15}=\frac{b}{10}\\\frac{a}{15}=\frac{c}{21}\end{cases}}\Leftrightarrow\frac{a}{15}=\frac{b}{10}=\frac{c}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{15}=\frac{b}{10}=\frac{c}{21}\Rightarrow\frac{a+b+c}{15+10+21}=\frac{230}{46}=5\)
\(\Rightarrow\hept{\begin{cases}a=15\cdot5=75\\b=10\cdot5=50\\c=21\cdot5=105\end{cases}}\)
Chúc bạn học tốt :>
Gọi 3 phần là a,b,c(0<a,b,c<180)
Áp dụng tc dtsbn:
\(\frac{a}{3}=\frac{b}{2};\frac{a}{5}=\frac{c}{7}\\ \Rightarrow\frac{a}{15}=\frac{b}{10}=\frac{c}{21}=\frac{a+b+c}{15+10+21}=\frac{180}{46}=\frac{90}{23}\)
\(\Rightarrow a=\frac{90}{23}\cdot15=\frac{2250}{23}\\ b=\frac{90}{23}\cdot10=\frac{900}{23}\\ c=\frac{90}{23}\cdot21=\frac{1890}{23}\)
Vậy ...
Gọi mỗi phần cần chia là x;y;z
(ĐK: x;y;z > 0)
Theo bài ra ta có:
- Số 267 được chia thành 3 phần
⇒ x + y + z = 267
- Phần thứ nhất và phần thứ hai tỉ lệ nghịch với \(\frac{1}{3}\) và \(\frac{1}{5}\)
\(\Rightarrow\frac{1}{3}x=\frac{1}{5}y\\ \Rightarrow\frac{x}{3}=\frac{y}{5}\left(1\right)\)
- Phần thứ nhất và phần thứ ba tỉ lệ nghịch với \(\frac{1}{7}\) và \(\frac{1}{11}\)
\(\Rightarrow\frac{1}{7}x=\frac{1}{11}z\\ \Rightarrow\frac{x}{7}=\frac{z}{11}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=\frac{y}{5}\\\frac{x}{7}=\frac{y}{11}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{21}=\frac{y}{35}\\\frac{x}{21}=\frac{z}{33}\end{matrix}\right.\\ \Rightarrow\frac{x}{21}=\frac{y}{35}=\frac{z}{33}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{21}=\frac{y}{35}=\frac{z}{33}=\frac{x+y+z}{21+35+33}=\frac{267}{89}=3\\ \Rightarrow\left\{{}\begin{matrix}\frac{x}{21}=3\\\frac{y}{35}=3\\\frac{z}{33}=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\cdot21=63\\y=3\cdot35=105\\z=33\cdot3=99\end{matrix}\right.\)
Vậy 3 phần cần tìm là 63;105;99
1.Giải:
Gọi 4 phần chia là \(a,b,c,d\)
Theo đề bài ta có:
\(\frac{a}{2}=\frac{b}{3};\frac{b}{4}=\frac{c}{5}\Leftrightarrow\frac{a}{8}=\frac{b}{12};\frac{b}{12}=\frac{c}{15}\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
\(\frac{a}{8}=\frac{b}{12}=\frac{c}{15};\frac{c}{6}=\frac{d}{7}\Leftrightarrow\frac{a}{16}=\frac{b}{24}=\frac{c}{30};\frac{c}{30}=\frac{d}{35}\Rightarrow\frac{a}{16}=\frac{b}{24}=\frac{c}{30}=\frac{d}{35}\)
Áp dụng tính chất của dãy tỉ số "=" nhau , ta có:
\(\frac{a}{16}=\frac{b}{24}=\frac{c}{30}=\frac{d}{35}=\frac{a+b+c+d}{16+24+30+35}=\frac{210}{105}=2\)
\(\Rightarrow\left[\begin{matrix}a=16.2=32\\b=24.2=48\\c=30.2=60\\d=35.2=70\end{matrix}\right.\)