Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) (x - 2y) (x2 - 2xy + y2)
= (x - 2y) (x - y)2
= x2 - xy - 2xy + 2y2
= (x2 - xy) - (2xy - 2y2)
= x (x - y) - 2y (x - y)
= (x - y) (x - 2y)
2a) x (x - 3) - y (3 - x)
= x (x - 3) + y (x - 3)
= (x - 3) (x + y)
b) 3x2 - 5x - 3xy + 5y
= (3x2 - 3xy) - (5x - 5y)
= 3x (x - y) - 5 (x - y)
= (x - y) (3x - 5)
3) 12x (3 - 4x) + 7 (4x - 3) = 0
12x (3 - 4x) - 7 (3 - 4x) = 0
(3 - 4x) (12x - 7) = 0
=> 3 - 4x = 0 hoặc 12x - 7 = 0
* 3 - 4x = 0 => x = \(\frac{3}{4}\)
* 12x - 7 = 0 => x = \(\frac{7}{12}\)
Vậy x =\(\frac{3}{4}\)hoặc x =\(\frac{7}{12}\)
a.
\(5x^2\left(x-2y\right)-15x\left(x-2y\right)\)
\(=\left(x-2y\right)\left(5x^2-15x\right)\)
\(=5x\left(x-2y\right)\left(x-3\right)\)
b.
\(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(3+5x\right)\)
a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)
\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)
\(-2y^3\left(4x^3-xy^2+y^3\right)\)
\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)
\(-8x^3y^3+2xy^5-2y^6\)
\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)
\(-\left(x^3y^3+8x^3y^3\right)\)
\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)
b)
(!) \(2\left(x+y\right)^2-7\left(x+y\right)+5\)
\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)
\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)
\(=\left(2x+2y-5\right)\left(x+y-1\right)\)
(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)
\(=2\left(xy+yz+zx\right)\)
1/
a, x2+36=12x
<=>x2-12x+36=0
<=>(x-6)2=0
<=>x-6=0
<=>x=6
b, 5x(x-3)+3-x=0
<=>5x(x-3)-(x-3)=0
<=>(5x-1)(x-3)=0
<=>\(\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}}\)
2/ Sửa đề x2z2 = y2z2
Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x^2+xy+xz\right)\left(x^2+xz+xy+yz\right)+y^2z^2\)
Đặt x2+xy+xz=t, ta có
\(A=4t\left(t+yz\right)+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+y^2z^2\right)^2\ge0\)
a) \(4x^2-6x=2x\left(2x-3\right)\)
b) \(9x^4y^3+3x^2y^4=3x^2y^3\left(3x^2+y\right)\)
c) \(3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(5x+3\right)\left(x-y\right)\)
d) \(x^3-2x^2+5x=x\left(x^2-2x+5\right)\)
e) \(5\left(x+3y\right)-15x\left(x+3y\right)=\left(5-15x\right)\left(x+3y\right)\)
\(=5\left(1-3x\right)\left(x+3y\right)\)
f) \(2x^2\left(x+1\right)-4\left(x+1\right)=\left(2x^2-4\right)\left(x+1\right)\)
\(=\left(\sqrt{2}x-2\right)\left(\sqrt{2}x+2\right)\left(x+1\right)\)
Answer:
Câu đầu bạn xem lại.
\(\left(3x+4\right)^2+\left(4x-3\right)^2+\left(2+5x\right).\left(2-5x\right)\)
\(=\left(3x\right)^2+2.2x.4+4^2+\left(4x\right)^2-2.4x.3+3^2+2^2-\left(5x\right)^2\)
\(=9x^2+24x+16+16x^2-24x+9+4-25x^2\)
\(=\left(9x^2+16x^2-25x^2\right)+\left(24x-24x\right)+\left(16+9+4\right)\)
\(=29\)
\(\left(5x+y\right).\left(25x^2-5xy+y^2\right)-\left(5x-y\right).\left(25x^2+5xy+y^2\right)\)
\(=\left(5x+y\right).[\left(5x\right)^2-5x.y+y^2]-\left(5x-y\right).[\left(5x\right)^2+5x.y+y^2]\)
\(=\left(5x\right)^3+y^3-[\left(5x\right)^3-y^3]\)
\(=\left(5x\right)^3+y^3-\left(5x\right)^3+y^3\)
\(=2y^3\)
a) 4x2-y2+2y-1
=4x2 -(y2-2y+1)
=(2X)2 -(y -1)2
=(2x-y+1)(2x+y-1)
b) 5x(x-2)-(2-x)
=5x(x-2)+(x-2)
=(x-2)(5x+1)