Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(5x-3y+3xy+x^2y^2\right)-\left(\dfrac{1}{2}x+2xy-y+4x^2y^2\right)\)
\(=5x-3y+3xy+x^2y^2-\dfrac{1}{2}x-2xy+y-4x^2y^2\)
\(=\left(5x-\dfrac{1}{2}x\right)+\left(y-3y\right)+\left(3xy-2xy\right)+\left(x^2y^2-4x^2y^2\right)\) \(=4,5x-2y+xy-3x^2y^2\)
Thay \(x=1;y=-\dfrac{1}{2}\) vào ta có:
\(4,5x-2y+xy-3x^2y^2\)
\(=4,5.1-2.\left(-\dfrac{1}{2}\right)+1.\left(-\dfrac{1}{2}\right)-3.1^2.\left(-\dfrac{1}{2}\right)^2\)
\(=4,5+1-\dfrac{1}{2}-\dfrac{3}{4}\) \(=\dfrac{17}{4}\)
a.\(6x^2-\left(2x-3\right)\left(3x+2\right)-1=0\Leftrightarrow6x^2-\left(6x^2-2x-6\right)-1=0\)
\(\Leftrightarrow2x+5=0\Leftrightarrow x=-\frac{5}{2}\)
b. \(\left(x-3\right)\left(x+7\right)-\left(x+5\right)\left(x-1\right)=0\Leftrightarrow x^2+4x-21-\left(x^2+4x-5\right)=0\)
\(\Leftrightarrow-16=0\)
Vậy không có x thỏa mãn.
a, <=> 2,5 : 4x = 2,5
<=> 4x = 2,5 : 2,5 = 1
<=> x=1 : 4 = 1/4
b, <=> 1/5.x:3 = 8/3
<=> 1/5.x = 8/3 . 3 = 8
<=> x = 8 : 1/5 = 40
\(x:0,25=16:x\)
\(\Leftrightarrow\frac{x}{0,25}=\frac{16}{x}\)
\(\Rightarrow x^2=16.0,25=4\)
mà \(x^2=4\)
\(\Rightarrow\hept{\begin{cases}x=2\\x=-2\end{cases}}\)
\(x:0,25=16:x\)
\(0,25.16=2x\)
\(4=2x\)
\(\Rightarrow x=2\)
\(70:\frac{4x+720}{x}=\frac{1}{2}\)
\(\frac{4x+720}{x}=70:\frac{1}{2}\)
\(\frac{4x+720}{x}=140\)
\(4x+720=140x\)
\(4x-140x=-720\)
\(-136x=-720\)
\(x=\frac{-720}{-136}\)
\(x=\frac{90}{17}\)
\(\frac{70x}{4x+720}=\frac{1}{2}\)
\(140x=4x+720\)
\(136x=720\)
\(x=720:136\)
\(x=\frac{90}{17}\)
Ta có: \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)\(\Rightarrow\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(z+x\right)}\)\(\Rightarrow z\left(x+y\right)=x\left(y+z\right)=y\left(z+x\right)\)\(\Rightarrow zx+zy=xy+xz=yz+xy\)
Ta có: zx + zy = xy + xz => zy = xy => z = x (1)
Ta có: x - z = x - x = 0
Ta có \(2x^2-2xy=5x-y-19\Leftrightarrow2x^2-5x+19=2xy-y\)
<=>\(\frac{2x^2-5x+19}{2x-1}=y\)
Mà y là số nguyên =>\(\frac{2x^2-5x+19}{2x-1}\in Z\Leftrightarrow\frac{2x^2-x-4x+2+17}{2x-1}\in Z\)
\(\Leftrightarrow2x-2+\frac{17}{2x-1}\in Z\Leftrightarrow\frac{17}{2x-1}\in Z\Rightarrow17⋮2x-1\)
đến đây lấp bảng nhé !
^_^
\(\left|x+\frac{4}{15}\right|-\left|-3.75\right|=-\left|-2,15\right|\)
\(\Rightarrow\left|x+\frac{4}{15}\right|-\frac{15}{4}=-\frac{43}{20}\)
\(\Rightarrow\left|x+\frac{4}{15}\right|=-\frac{43}{20}+\frac{15}{4}\)
\(\Rightarrow\left|x+\frac{4}{15}\right|=\frac{8}{5}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{4}{15}=\frac{8}{5}\\x+\frac{4}{15}=-\frac{8}{5}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=-\frac{28}{15}\end{cases}}\)
\(\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
\(\left|x+\frac{4}{15}\right|-3,75=-2,15\)
\(\left|x+\frac{4}{15}\right|=1,6\)
=> \(x+\frac{4}{15}=1,6\) hoặc \(x+\frac{4}{15}=-1,6\)
=> \(x=\frac{4}{3}\) hoặc \(x=\frac{-28}{15}\)
Vậy..
\(B=\left|x+3\right|+\left|2-x\right|\ge\left|x+3+2-x\right|=\left|5\right|=5\)
Dấu "=" xảy ra khi \(x=0\)
Vậy \(B_{min}=5\Leftrightarrow x=0\)
0,25 : x = x : 16
=> 0,25 .16 = x2
x2 = 64 = 82 = (-8)2
=> x = 8 hoặc x = -8
0,25.x=x:16
x²=0.25.16
x²=4
x²=2²=(-2)²
=>x=2 hoặc x=-2
Vậy x=\(\pm\)2