Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Ta co:
\(\text{ }\sqrt{5x^2+10x+9}=\sqrt{5\left(x+1\right)^2+4}\ge2\)
\(\sqrt{2x^2+4x+3}=\sqrt{2\left(x+1\right)^2+1}\ge1\)
\(\Rightarrow A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\ge2+1=3\)
Dau '=' xay ra khi \(x=-1\)
Vay \(A_{min}=3\)khi \(x=-1\)
a) \(\sqrt{x^2-9}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)
S = (3;6)
b)\(\sqrt{x^2-4}-2\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\end{matrix}\right.\) S= (2)
c)\(\sqrt{\frac{2x-3}{x-1}}=2\left(đkxđ:x\ne1\right)\Leftrightarrow2\sqrt{x-1}=\sqrt{2x-3}\\ \Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\) S= (1/2)
d) đkxđ : x khác -1
\(\sqrt{\frac{4x+3}{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) S = (-6/5)
e) đk x >= 3/2
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\) (loại) vậy pt vô nghiệm
f) đk x >= -3/4
\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\Leftrightarrow4x+3=9x+9\Leftrightarrow x=-\frac{6}{5}\) (loại) vậy pt vô nghiệm
\(\sqrt{4\left(1-x\right)^2}-6=0\)
<=> \(\left|2\left(1-x\right)\right|=6\)
TH1: x \(\ge\)1 Khi đó pt trở thành:
\(2\left(x-1\right)=6\)
<=> x - 1 = 3
<=> x = 4 (tm)
TH2: x < 1, khi đó pt trở thành:
2(1 - x) = 6
<=> 1 - x = 3
<=> x = -2(tm)
vậy S= {4; -2}
Trả lời:
\(\sqrt{4\left(1-x\right)^2}-6=0\)
\(\Leftrightarrow2.\left|1-x\right|=6\)
\(\Leftrightarrow\left|1-x\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}1-x=3\\1-x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=4\end{cases}}\)
Vậy \(x=\left\{-2,4\right\}\)
\(\sqrt{4x^2+4x+1}=x+2\)\(\left(x\ge-2\right)\)
\(\Leftrightarrow4x^2+4x+1=\left(x+2\right)^2\)
\(\Leftrightarrow4x^2+4x+1=x^2+4x+4\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\x=-1\left(TM\right)\end{cases}}\)
Vậy \(x=\left\{1,-1\right\}\)
\(\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{20-12\sqrt{5}+9}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-2\sqrt{5}+3}}\)
a) \(A=5+\sqrt{-4x^2-4x}\)
\(A==5+\sqrt{-4x\left(x+1\right)}\)
Có: \(-4x\left(x+1\right)\le0\)
\(\Rightarrow\sqrt{-4x\left(x+1\right)}=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy: \(Max_A=5\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(B=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ: \(\hept{\begin{cases}x\ge2\\x\le4\end{cases}}\Rightarrow x\in\left\{2;3;4\right\}\)
Thay \(x=2\Rightarrow\sqrt{2-2}+\sqrt{4-2}=\sqrt{2}\)
Thay \(x=3\Rightarrow\sqrt{3-1}+\sqrt{4-3}=2\)
Thay \(x=4\Rightarrow\sqrt{4-2}+\sqrt{4-4}=\sqrt{2}\)
Vậy: \(Max_B=2\) tại \(x=3\)
Bài 2:
a)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\ge x-1+0+3-x=2\)
Dấu = khi \(\hept{\begin{cases}x-1\ge0\\x-2=0\\x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=2\\x\le3\end{cases}}\Leftrightarrow x=2\)
Vậy MinA=2 khi x=2
a)\(\sqrt{4x}< =10\)
<=> 4x <= 100
<=> x <= 25
b) \(\sqrt{9x}>=3\)
<=> 9x >= 9
<=> x >= 1
c) \(\sqrt{4x^2+4x+1}=6\)
<=>\(\sqrt{\left(2x\right)^2+2\left(2x\right).1+1^2}=6\)
<=>\(\sqrt{\left(2x+1\right)^2}=6\)
<=>\(|2x+1|=6\)
<=>\(\orbr{\begin{cases}2x+1=6\\2x+1=-6\end{cases}}\)
<=>\(\orbr{\begin{cases}2x=5\\2x=-7\end{cases}}\)
<=>\(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{-7}{2}\end{cases}}\)
d)\(\sqrt{9x-9}-2\sqrt{x-1}=6\)
<=>\(\sqrt{9\left(x-1\right)}-2\sqrt{x-1}=6\)
<=>\(3\sqrt{x-1}-2\sqrt{x-1}=6\)
<=>\(\sqrt{x-1}=6\)
<=> x - 1 = 36
<=> x = 37
f) \(\sqrt{2x+1}=\sqrt{x-1}\)
<=> 2x + 1 = x -1
<=> 2x - x = -1 -1
<=> x = -2
g)\(\sqrt{x^2-x-1}=\sqrt{x-1}\)
<=>x2 -x -1 = x -1
<=> x2 -x-x-1+1 = 0
<=> x2 - 2x + 0 = 0
<=> x(x-2) = 0
<=>\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy x=2 hoặc x=-1
a, \(\sqrt{1-4x+4x^2}=1\Leftrightarrow\sqrt{\left(1-2x\right)^2}=1\Leftrightarrow l1-2xl=1\)
(+) l 1 - 2x l = 1 - 2x khi 1 - 2 x >= 0 => x < -1/2
ta có 1 - 2x = 1 => -2x = 0 => x = 0 ( loại)
(+) l 1 - 2x l = 2 x - 1 .........
Ta có 2x - 1 = 1
2x = 2
x = 1 ( TM)
Vậy x = 1
c, \(\sqrt{x-3+2\sqrt{x-3}+1}+\sqrt{x-3+2.\sqrt{x-3}.3+9}=4\)
Mình nhường cho triệu dang gải tiếp
Đk: \(x\ge2+\sqrt{3}\)
Ta có: \(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\)
<=> \(x-4+\sqrt{x^2-4x+1}-1-3\left(\sqrt{x}-2\right)=0\)
<=> \(x-4+\dfrac{x\left(x-4\right)}{\sqrt{x^2-4x+1}+1}-\dfrac{3\left(x-4\right)}{\sqrt{x}+2}=0\)
<=> \(\left(x-4\right).\left(1+\dfrac{x}{\sqrt{x^2-4x+1}+1}-\dfrac{3}{\sqrt{x}+2}\right)=0\)
<=> \(x=4\)
Vì \(x\ge2+\sqrt{3}\) -> \(\dfrac{x}{\sqrt{x^2-4x+1}}>0\); \(-\dfrac{3}{\sqrt{x}+2}>-1\)
=> \(1+\dfrac{x}{\sqrt{x^2-4x+1}}-\dfrac{3}{\sqrt{x}+2}>0\)