K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 7 2017

Ta có \(y'=-3<0\) nên hàm số luôn nghịch biến với mọi $x$ thuộc tập xác định.

Do đó kết hợp với \(x<2\) nên \(y>y(2)=-4\)

Dấu bằng không xảy ra cho nên hàm không có min.

22 tháng 2 2017

Chọn C

24 tháng 6 2019

Chọn C

Xét hàm số f(x) =  x 3 - 3 x + m .

Để GTNN của hàm số  y =  x 3 - 3 x + m 2  trên đoạn [-1;1]  bằng 1 thì   hoặc 

Ta có 

=> f(x) nghịch biến trên [-1;1]

Suy ra  và 

Trường hợp 1: 

Trường hợp 2: 

Vậy tổng các giá trị của tham số m là 0.

Chọn D

NV
30 tháng 1 2022

\(f'\left(x\right)=3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(f\left(-1\right)=-2;f\left(0\right)=2;f\left(2\right)=-2\)

\(\Rightarrow M=2;m=-2\Rightarrow P=6\)

Cả 4 đáp án đều sai (kiểm tra lại đề bài, có đúng là \(f\left(x\right)=x^3-3x^2+2\) hay không?)

26 tháng 2 2017

5 tháng 4 2019

Chọn B.

Ta có 

Do đó hàm số đồng biến trên [0;2].

Suy ra 

Do đó 4M – 2m = 6.

12 tháng 1 2018

Đáp án C

Phương pháp:

- Tìm TXĐ

- Tính y’

- Lập bảng biến thiên của hàm số trên đoạn  - 1 ; 1 2

- Xác định giá trị lớn nhất và giá trị nhỏ nhất của hàm số

- Tính tích M.m.

Cách giải:

TXĐ: D = R\{1}

19 tháng 8 2017

Đáp án A

6f9vHNHttYaD.png

NV
13 tháng 6 2021

\(y'=3x^2-6x-9=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

a. Trên [-4;4] ta có: 

\(y\left(-4\right)=-41\) ; \(y\left(-1\right)=40\) ; \(y\left(3\right)=8\) ; \(y\left(4\right)=15\)

\(\Rightarrow y_{min}=-41\) ; \(y_{max}=40\)

b. Trên [0;5] ta có:

\(y\left(0\right)=35\) ; \(y\left(3\right)=8\)\(y\left(5\right)=40\)

\(\Rightarrow y_{max}=40\) ; \(y_{min}=8\)

NV
5 tháng 12 2021

\(y'=6x^2+6x-12=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(y\left(-1\right)=14\) ; \(y\left(1\right)=-6\) ; \(y\left(5\right)=266\)

\(\Rightarrow\min\limits_{\left[-1;5\right]}y=-6\) ; \(\max\limits_{\left[-1;5\right]}y=266\)

20 tháng 11 2018

Đáp án B