Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = 5( x2 - 9y2 - 6y - 1 ) = 5[ x2 - ( 9y2 + 6y + 1 ) ] = 5[ x2 - ( 3y + 1 )2 ] = 5( x - 3y - 1 )( x + 3y + 1 )
b) = 125x3 - 25x2 + 15x2 - 3x + 5x - 1 = 25x2( 5x - 1 ) + 3x( 5x - 1 ) + ( 5x - 1 ) = ( 5x - 1 )( 25x2 + 3x + 1 )
c) = 5( x - 7 ) + a( x - 7 ) = ( x - 7 )( a + 5 )
d) = ( a - b )2 + ( a - b ) = ( a - b )( a - b + 1 )
e) = ax2 + a - a2x - x = ax( a - x ) + ( a - x ) = ( a - x )( ax + 1 )
f) = ( 10x )2 - ( x2 + 25 )2 = ( 10x - x2 - 25 )( 10x + x2 + 25 ) = -( x - 5 )2( x + 5 )2
Với x > 0, áp dụng bất đẳng thức AM-GM ta có :
\(x+2021\ge2\sqrt{2021x}\Rightarrow\left(x+2021\right)^2\ge8084x\)
\(\Rightarrow\frac{1}{\left(x+2021\right)^2}\le\frac{1}{8084x}\Leftrightarrow\frac{x}{\left(x+2021\right)^2}\le\frac{1}{8084}\)
Dấu "=" xảy ra <=> x = 2021
Vậy ...
\(\frac{x}{\left(x+2021\right)^2}\left(x>0\right)\)
\(=\frac{1}{\frac{1}{x}\left(x+2021\right)^2}\)
\(=\frac{1}{\left(\frac{x+2021}{\sqrt{x}}\right)^2}\)
\(=\frac{1}{ \left(\sqrt{x}+\frac{2021}{\sqrt{x}}\right)^2}\)
Ta có :
\(\sqrt{x}+\frac{2021}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{2021}{\sqrt{x}}}=2\sqrt{2021}\)
\(\rightarrow\left(\sqrt{x}+\frac{2021}{\sqrt{x}}\right)^2\ge4.2021=8084\)
\(\rightarrow\frac{1}{\left(\sqrt{x}+\frac{2021}{\sqrt{x}}\right)^2}\le\frac{1}{8084}\)
Dấu ''='' xảy ra \(\Leftrightarrow\sqrt{x}=\frac{2021}{\sqrt{x}}\Leftrightarrow x=2021\)
Vậy Max \(\left(\frac{x}{\left(x+2021\right)^2}\right)=\frac{1}{8084}\Leftrightarrow x=2021\)
TL:
a,G là trọng tâm của tam giác ABC nên GD =1/2 BG suy ra GM= GD
Tương tự EG=GN suy ra MNDE là hình bình hành
a) Trong tam giác ABC , có :
EA = EB ( CE là trung tuyến )
DA = DC ( DB là trung tuyến )
=> ED là đường trung bình của tam giác ABC
=> ED // BC (1) , DE = 1/2 BC (2)
Trong tam giác GBC , có :
MG = MB ( gt)
NG = NC ( gt)
=> MN là đương trung bình của tam giác GBC
=> MN // BC (3) , MN = 1/2 BC (4)
Từ 1 và 2 => ED // MN ( * )
Từ 3 và 4 => ED = MN ( **)
Từ * và ** => EDMN là hbh ( DHNB )
g) \(x^5-3x^4+3x^3-x^2=x^2\left(x^3-3x^2+3x-1\right)=x^2\left(x-1\right)^3\)
f) \(x^2-25-2xy+y^2=\left(x^2-2xy+y^2\right)-25=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)
e) \(16x^3+54y^3=2\left(8x^3+27y^3\right)=2\left[\left(2x\right)^3+\left(3y\right)^3\right]=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
d) \(3y^2-3z^2+3x^2+6xy=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)
a: =>m^2x-m^3-x+3m-2=0
=>x(m^2-1)=m^3-3m+2
=>x(m-1)(m+1)=m^3-m-2m+2=m(m-1)(m+1)-2(m-1)=(m-1)^2*(m+2)
Để đây là pt bậc nhất 1 ẩn thì (m-1)(m+1)<>0
=>m<>1 và m<>-1
b: Khi m=0 thì pt sẽ là x+2=0
=>x=-2
c: Khi x=3 thì pt sẽ là:
3(m^2-1)=m^3-3m+2
=>(m-1)^2(m+1)-3(m-1)(m+1)=0
=>(m-1)(m+1)(m-1-3)=0
=>(m-1)(m+1)(m-4)=0
=>\(m\in\left\{1;-1;4\right\}\)