Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA ⊥ (ABCD) và SA = 3a.

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

a: AD vuông góc SA

AD vuông góc AB

=>AD vuông góc (SAB)

AB vuông góc AD

AB vuông góc SA

=>AB vuông góc (SAD)

b:

\(SB=\sqrt{\left(3a\right)^2+a^2}=a\sqrt{10}\)

\(SC=\sqrt{SA^2+AC^2}=\sqrt{9a^2+2a^2}=a\sqrt{11}\)

\(SM=\dfrac{SA^2}{SB}=\dfrac{9a^2}{a\sqrt{10}}=\dfrac{9a}{\sqrt{10}}\)

\(cosMSC=cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{10a^2+11a^2-a^2}{2\cdot a\sqrt{10}\cdot a\sqrt{11}}=\dfrac{\sqrt{110}}{11}\)

 

vecto AM*vecto SC

=vecto SC*vecto SM-vecto SC*vecto SA

=\(SC\cdot SM\cdot cosCSM-SC\cdot SA\cdot cosASC\)

\(=a\sqrt{11}\cdot\dfrac{9}{\sqrt{10}}\cdot a\cdot\dfrac{\sqrt{110}}{11}-a\sqrt{11}\cdot3a\cdot\dfrac{3a}{a\sqrt{11}}=0\)

=>AM vuông góc SC

 

a: AD vuông góc SA

AD vuông góc AB

=>AD vuông góc (SAB)

AB vuông góc AD

AB vuông góc SA

=>AB vuông góc (SAD)

b:

\(SB=\sqrt{\left(3a\right)^2+a^2}=a\sqrt{10}\)

\(SC=\sqrt{SA^2+AC^2}=\sqrt{9a^2+2a^2}=a\sqrt{11}\)

\(SM=\dfrac{SA^2}{SB}=\dfrac{9a^2}{a\sqrt{10}}=\dfrac{9a}{\sqrt{10}}\)

\(cosMSC=cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{10a^2+11a^2-a^2}{2\cdot a\sqrt{10}\cdot a\sqrt{11}}=\dfrac{\sqrt{110}}{11}\)

 

vecto AM*vecto SC

=vecto SC*vecto SM-vecto SC*vecto SA

=\(SC\cdot SM\cdot cosCSM-SC\cdot SA\cdot cosASC\)

\(=a\sqrt{11}\cdot\dfrac{9}{\sqrt{10}}\cdot a\cdot\dfrac{\sqrt{110}}{11}-a\sqrt{11}\cdot3a\cdot\dfrac{3a}{a\sqrt{11}}=0\)

=>AM vuông góc SC

a: AD vuông góc SA

AD vuông góc AB

=>AD vuông góc (SAB)

AB vuông góc AD

AB vuông góc SA

=>AB vuông góc (SAD)

b:

\(SB=\sqrt{\left(3a\right)^2+a^2}=a\sqrt{10}\)

\(SC=\sqrt{SA^2+AC^2}=\sqrt{9a^2+2a^2}=a\sqrt{11}\)

\(SM=\dfrac{SA^2}{SB}=\dfrac{9a^2}{a\sqrt{10}}=\dfrac{9a}{\sqrt{10}}\)

\(cosMSC=cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{10a^2+11a^2-a^2}{2\cdot a\sqrt{10}\cdot a\sqrt{11}}=\dfrac{\sqrt{110}}{11}\)

 

vecto AM*vecto SC

=vecto SC*vecto SM-vecto SC*vecto SA

=\(SC\cdot SM\cdot cosCSM-SC\cdot SA\cdot cosASC\)

\(=a\sqrt{11}\cdot\dfrac{9}{\sqrt{10}}\cdot a\cdot\dfrac{\sqrt{110}}{11}-a\sqrt{11}\cdot3a\cdot\dfrac{3a}{a\sqrt{11}}=0\)

=>AM vuông góc SC

31 tháng 3 2017

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 11 trang 114 sgk Hình học 11 | Để học tốt Toán 11

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

13 tháng 3 2022

undefinedundefinedundefined