Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E H F 1 1 1 1
Ta có : góc vuông = 90o
a)
- tia AH cắt tia BC là góc vuông nên HA là tia phân giác của góc BAC nên :
\(\widehat{BAH}=\widehat{HAC}\) = 90o:2 = 45o
- tia EH cắt tia BC là góc vuông nên AB là tia phân giác của góc BAC nên :
\(\widehat{BHE}=\widehat{EAH}\) = 90o:2 = 45o
=> \(\widehat{ABC}=\widehat{HAC}\) (45o=45o) (đpcm)
b) ta có: + \(\widehat{BHE}\) =45o ( câu a )
+ \(\widehat{FHA}\) = 45o (câu a)
=> \(\widehat{BHE}\) = \(\widehat{FHA}\) (45o=45o) (đpcm)
Xét tg AHB và tg AHC,ta có:
AH chung
gBAH=gCAH(tia phân giác của góc A cắt BC tại H)
AB=AC(gt)
=>tg AHB =tg AHC(c-g-c)
Xét tg ABC,có:AB=AC (gt)
=>tg ABC cân tại A
mà AH là tia phân giác
=>AH là đường cao
=>AH vuông góc vs BC
Ta có:g BAH+g ABH=g AHB=90*
và gDHB+gDBH=gBDH=90*
=>góc HAB = góc BHD
gợi ý phần c
gọi F là giao điểm của AH và DE
Xét tg ADH và tg AEH,có
AH chung
ADH=AEH=90
DAH=EAH
=>tg ADH =tg AEH(ch-gn)
=>AD=AE
=>tg ADE cân tại A
mà AF là tia phân giác
=>AF vuông góc vs DE
ta có BHF=EFH=90
=>DE//BC
p/s:gợi ý thôi nên trình bày cẩn thận hơn nhé.
a) xét \(\Delta MBE\)vuông tại E và \(\Delta HBE\)
có \(EM=EH\left(gt\right)\)
BE là cạnh chung
\(\Rightarrow\Delta MBE=\Delta HBE\left(ch-cgv\right)\)
\(\Rightarrow\widehat{MBE}=\widehat{HBE}\)( 2 góc tương ứng)
xét \(\Delta MAE\)VUÔNG TẠI E và \(\Delta HAE\)VUÔNG TẠI E
CÓ EM=EH (gt)
AE LÀ CẠNH CHUNG
\(\Rightarrow\Delta MAE=\Delta HAE\left(ch-cgv\right)\)
\(\Rightarrow\widehat{MAE}=\widehat{HAE}\)(2 GÓC TƯƠNG ỨNG)
XÉT \(\Delta ABM\)VÀ \(\Delta ABH\)
CÓ \(\widehat{MBE}=\widehat{HBE}\left(cmt\right)\)
AB LÀ CẠNH CHUNG
\(\widehat{MAE}=\widehat{HAE}\left(cmt\right)\)
\(\Rightarrow\Delta ABM=\Delta ABH\left(g-c-g\right)\)
MÀ TAM GIÁC ABH VUÔNG TẠI H
=> TAM GIÁC ABM VUÔNG TẠI M
=> \(AM\perp BM\)( ĐỊNH LÍ)
B) TA CÓ \(AC\perp AB\)
\(HE\perp AB\)
\(\Rightarrow AC//HE\)(ĐỊNH LÍ)
\(\Rightarrow\widehat{EHA}=\widehat{HAF}\left(SLT\right)\)
XÉT \(\Delta EHA\)VUÔNG TẠI E VÀ \(\Delta FAH\)VUÔNG TẠI F
CÓ \(\widehat{EHA}=\widehat{HAF}\left(cmt\right)\)
HA LÀ CẠNH CHUNG
\(\Rightarrow\Delta EHA=\Delta FAH\left(ch-gn\right)\)
=> EA = FH (2 CẠNH TƯƠNG ỨNG)
XÉT \(\Delta EAH\)VUÔNG TẠI E VÀ \(\Delta HFE\)VUÔNG TẠI H
CÓ EA= FH (cmt)
EH LÀ CẠNH CHUNG
\(\Rightarrow\Delta EAH=\Delta HFE\left(cgv-cgv\right)\)
=> AH = EF (2 CẠNH TƯƠNG ỨNG)
CHÚC BN HỌC TỐT!!!!!!!!!!
a) Tam giác vuông ABH vuông tại H có góc ABC + góc BAH=90 độ nên ABC = 90 - BAH (1)
Góc HAB + góc HAC =90 nên góc HAB = 90 - HAC (2)
Từ 1 và 2 suy ra ABC =90 -(90 -HAC) = 90 -90 +HAC = HAC
b) Tam giác vuông EBH vuông tại E có ABC + BHE = 90 nên BHE = 90 -ABC
Tam giác vuông AHF vuông tại F có AHF + HAC =90 nên AHF=90- HAC
Theo cm câu a ABC - HAC nên BHE = AHF
LIKE cho mình nhé ^-^