K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
a: Xét (A) có
BH,BD là các tiếp tuyến
Do đó: BH=BD và AB là phân giác của góc HAD
AB là phân giác của góc HAD
=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)
Xét (A) có
CE,CH là các tiếp tuyến
Do đó: CE=CH và AC là phân giác của góc HAE
AC là phân giác của góc HAE
=>\(\widehat{HAE}=2\cdot\widehat{HAC}\)
Ta có: \(\widehat{HAE}+\widehat{HAD}=\widehat{DAE}\)
=>\(\widehat{DAE}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
=>\(\widehat{DAE}=2\cdot\widehat{BAC}=180^0\)
=>D,A,E thẳng hàng
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot HC=AH^2\)
=>\(BD\cdot CE=\left(\dfrac{1}{2}DE\right)^2=\dfrac{1}{4}DE^2\)