K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2023

a: Xét (A) có

BH,BD là các tiếp tuyến

Do đó: BH=BD và AB là phân giác của góc HAD

AB là phân giác của góc HAD

=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)

Xét (A) có

CE,CH là các tiếp tuyến

Do đó: CE=CH và AC là phân giác của góc HAE

AC là phân giác của góc HAE

=>\(\widehat{HAE}=2\cdot\widehat{HAC}\)

Ta có: \(\widehat{HAE}+\widehat{HAD}=\widehat{DAE}\)

=>\(\widehat{DAE}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{DAE}=2\cdot\widehat{BAC}=180^0\)

=>D,A,E thẳng hàng

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot HC=AH^2\)

=>\(BD\cdot CE=\left(\dfrac{1}{2}DE\right)^2=\dfrac{1}{4}DE^2\)

3 tháng 6 2016

đề lạ wa mk nhìn chẳng hỉu