Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)
f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)
k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé
tu lam di cau nao kho thi hoi hoi vay ko ai tra loi cho dau
cau e)
\(A=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}\)(suy ra A>=0)
\(A^2=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)
\(A^2=1\)
A=1
(bai toan co nhieu cach)
cau m)
\(=\frac{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
\(=\frac{\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{2}}\)
\(=1\)
cau G)
\(=\frac{5\sqrt{7}}{\sqrt{35}}-\frac{7\sqrt{5}}{\sqrt{35}}+\frac{2\sqrt{70}}{\sqrt{35}}\)
\(=\frac{5}{\sqrt{5}}-\frac{7}{\sqrt{7}}+2\sqrt{2}\)
\(=\sqrt{5}-\sqrt{7}+2\sqrt{2}\)
a) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
\(=\frac{3\left(2-\sqrt{3}\right)}{2^2-3}+\frac{13\left(4+\sqrt{3}\right)}{4^2-3}+\frac{6\sqrt{3}}{3}\)
\(=3\left(2-\sqrt{3}\right)+\left(4+\sqrt{3}\right)+2\sqrt{3}\)
\(=3.2+4=6+4=10\)
b) \(=\left[\frac{\left(\sqrt{14}-\sqrt{7}\right)\left(\sqrt{2}+1\right)}{2-1}+\frac{\left(\sqrt{15}-\sqrt{5}\right)\left(\sqrt{3}+1\right)}{3-1}\right]:\frac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=2\) (nhân bung mấy cái trong ngoặc vuông ra, rút gọn)
c) Gợi ý: \(28-10\sqrt{3}=5^2-2.5.\sqrt{3}+\sqrt{3}=\left(5-\sqrt{3}\right)^2\)
d) \(=\frac{3\left(3-2\sqrt{3}\right)}{3^2-\left(2\sqrt{3}\right)^2}+\frac{3\left(3+2\sqrt{3}\right)}{3^2-\left(2\sqrt{3}\right)^2}=-6\)
e) Tự làm.
a, = \(\frac{\sqrt{15}}{10}\) + \(\frac{\sqrt{15}}{30}\) - \(\frac{2\sqrt{15}}{15}\)
= \(\sqrt{15}\left(\frac{1}{10}+\frac{1}{30}-\frac{2}{15}\right)\)
= \(\sqrt{15}.0\)
= 0
b, = \(\left(\frac{\sqrt{5}+\sqrt{3}}{5-3}+\frac{\sqrt{5}-\sqrt{3}}{5-3}\right).\sqrt{5}\)
= \(\frac{\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}}{2}.\sqrt{5}\)
= \(\frac{2\sqrt{5}}{2}.\sqrt{5}\)
= \(\sqrt{5}.\sqrt{5}\)
= 5
c, = \(\frac{5\sqrt{3}}{\sqrt{15}}+\frac{3\sqrt{5}}{\sqrt{15}}\)
= \(\sqrt{5}+\sqrt{3}\)
d, Mình sửa lại đề bài cho bạn : \(\left(2+\sqrt{5}\right)^2-\left(2-\sqrt{5}\right)^2\)
= \(\left(2+\sqrt{5}-2+\sqrt{5}\right)\left(2+\sqrt{5}+2-\sqrt{5}\right)\)
= \(2\sqrt{5}.4\)
= \(8\sqrt{5}\)
e, = \(\frac{4\sqrt{3}}{3}+15\sqrt{3}-3\sqrt{3}-\frac{20\sqrt{3}}{3}\)
= \(\sqrt{3}.\left(\frac{4}{3}+15-3-\frac{20}{3}\right)\)
= \(\sqrt{3}.\frac{20}{3}\)
= \(\frac{20\sqrt{3}}{3}\)
a, √320+√160−2√115320+160−2115
b, (1√5−√3+1√5+√3).√5(15−3+15+3).5
c, (5√3+3√5):√15(53+35):15
d, (2+√5)2−(2+√5)2(2+5)2−(2+5)2
e, 13√48+3√75−√27−10√1131348+375−27−10113
a) Ta có: \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=\left(-\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=-2+2\sqrt{5}-\sqrt{5}\)
\(=-2+\sqrt{5}\)
b) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right)\div\frac{1}{8}\)
\(=\left(\frac{\sqrt{2}}{4}-\frac{3\sqrt{2}}{2}+8\sqrt{2}\right)\cdot8\)
\(=\frac{27\sqrt{2}}{4}\cdot8\)
\(=54\sqrt{2}\)