\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

1 tháng 8 2019

a) \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

\(=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}-1+1\)

\(=\frac{a^2-\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}\)

b) \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-2\sqrt{a}=2\)

\(\Leftrightarrow a^2+\sqrt{a}.\left(a-\sqrt{a}+1\right)-2\sqrt{a}.\left(a-\sqrt{a}+1\right)=2\left(a-\sqrt{a}+1\right)\)

\(\Leftrightarrow a^2-2\sqrt{a}.a+2a-\sqrt{a}-2a=2a-2\sqrt{a}+2\)

\(\Leftrightarrow a^2-2\sqrt{a}.a+2a-\sqrt{a}-2a=-2\sqrt{a}+2\)

\(\Leftrightarrow-2\sqrt{a}.a+2a-\sqrt{a}-2a=-2\sqrt{a}+2-a^2\)

\(\Leftrightarrow-2\sqrt{a}.a-\sqrt{a}=-2\sqrt{a}+2-a^2\)

\(\Leftrightarrow-2a\sqrt{a}+\sqrt{a}=2-a^2\)

\(\Leftrightarrow\sqrt{a}.\left(2a+1\right)=2-a^2\)

\(\Leftrightarrow\left[\sqrt{a}.\left(2a+1\right)\right]^2=\left(2-a^2\right)^2\)

\(\Leftrightarrow4a^3-4a^2+a=4-4a^2+a^4\)

\(\Leftrightarrow\orbr{\begin{cases}a=4\left(\text{thỏa mãn}\right)\\a=1\left(\text{loại}\right)\end{cases}}\)

=> a = 4

1 tháng 8 2019

Cách ngắn hơn :

\(đkxđ\Leftrightarrow x\ge0\)

\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\frac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}\)\(-2\sqrt{a}-1+1\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}\)

\(=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\)

\(b,A=2\Rightarrow a-\sqrt{a}=2\)

\(\Rightarrow a-\sqrt{a}-2=0\)

\(\Rightarrow a+\sqrt{a}-2\sqrt{a}-2=0\)

\(\Rightarrow\sqrt{a}\left(\sqrt{a}+1\right)-2\left(\sqrt{a}+1\right)=0\)

\(\Rightarrow\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{a}=2\\\sqrt{a}=-1\end{cases}\Rightarrow\orbr{\begin{cases}a=4\\a\in\varnothing\end{cases}}}\)

\(\Rightarrow a=4\)

\(c,A=a-\sqrt{a}=\sqrt{a}^2-2.\sqrt{a}.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)

\(=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\)

\(\Rightarrow A_{min}=-\frac{1}{4}\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\sqrt{a}=\frac{1}{2}\Rightarrow a=\frac{1}{4}\)

Vậy với \(a=\frac{1}{4}\)thì A có giá trị nhỏ nhất là \(-\frac{1}{4}\)

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

31 tháng 8 2016

a) \(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\left(ĐK:a\ge0\right)\)

\(=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)

b) Để A=2 \(\Leftrightarrow a-\sqrt{a}=2\)

                  \(\Leftrightarrow a-\sqrt{a}-2=0\)

                   \(\Leftrightarrow\left(\sqrt{a}+1\right)\left(\sqrt{a}-2\right)=0\)

                   \(\Leftrightarrow\sqrt{a}-2=0\left(Vì\sqrt{a}+1\ne0\right)\)

                   \(\Leftrightarrow a=4\) (TM)

Vậy a=4 thì A=2

c) \(A=a-\sqrt{a}=a-\sqrt{a}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\)

Vì: \(\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0\)

=> \(\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN của A là \(-\frac{1}{4}\) khi \(a=\frac{1}{4}\)

31 tháng 8 2016

hay nhở

27 tháng 11 2018

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1

=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)

\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)

Em thay vào tính nhé!

c) với x>1

A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)

Áp dụng bất đẳng thức Cosi 

A\(\ge2\sqrt{2}+3\)

Xét dấu bằng xảy ra ....

27 tháng 11 2018

dấu bằng xảy ra khi nào v ạ ??

6 tháng 8 2018

a) ĐK:  \(a>0\)

\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\frac{\sqrt{a}.\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=\sqrt{a}.\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\)

\(=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\)

a: \(P=\sqrt{a}\left(\sqrt{a}-1\right)-2\sqrt{a}-1+2\left(\sqrt{a}+1\right)\)

\(=a-\sqrt{a}-2\sqrt{a}-1+2\sqrt{a}+2\)

\(=a-\sqrt{a}+1\)

b: \(P=\left(\sqrt{a}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)

Dấu '=' xảy ra khi a=1/4

15 tháng 7 2016

a) \(P=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\frac{\sqrt{a}.\left[\left(\sqrt{a}\right)^3+1\right]}{a-\sqrt{a}+1}-\frac{\sqrt{a}.\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=\frac{\sqrt{a}.\left(\sqrt{a}+1\right).\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-2\sqrt{a}-1+1\)

\(=a+\sqrt{a}-2\sqrt{a}-1=a-\sqrt{a}\)

b)Ta có a>0 do đó: \(P=a-\sqrt{a}\ge0\)

Dấu "=" xảy ra khi a=1

c) Ta thấy \(P\ge0\)

=>P2\(\ge\)P

=>P\(\ge\)\(\sqrt{P}\)

15 tháng 7 2016

ĐKXĐ: \(a>0\)

a/ \(P=\frac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

      \(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

      \(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1\)

         \(=a-\sqrt{a}\)

b/ Ta có: \(\hept{\begin{cases}a>0\\\sqrt{a}\ge0\end{cases}\Rightarrow a-\sqrt{a}\ge0}\) 

    MinP = 0 khi \(\sqrt{a}=0\Rightarrow a=0\)

c/ \(P\ge\sqrt{P}\)

8 tháng 8 2018

1/ Rút gọn: \(a)3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\left(a\ge0\right)=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-2\sqrt{2a}=3\sqrt{2a}\left(1-a\right)\)b)\(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{2}{2+\sqrt{2}}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-1-2}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3}{\sqrt{2}+2}+\dfrac{\sqrt{2}+1}{\sqrt{2}}=\dfrac{\sqrt{2}-3+2+1+2\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3\sqrt{2}}{\sqrt{2}\left(1+\sqrt{2}\right)}=\dfrac{3}{1+\sqrt{2}}\)c)\(\dfrac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3+\sqrt{5}}\right)\sqrt{2}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{6+2\sqrt{5}}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{6-2\sqrt{5}}}=\dfrac{2\sqrt{2}+\sqrt{10}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\sqrt{2}-\sqrt{10}}{2-\sqrt{\left(\sqrt{5}-1\right)^2}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{2+\sqrt{5}+1}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)}{3+\sqrt{5}}+\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{3-\sqrt{5}}=\dfrac{\sqrt{2}\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\sqrt{2}\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\dfrac{\sqrt{2}\left(6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5\right)}{9-5}=\dfrac{2\sqrt{2}}{4}=\dfrac{1}{\sqrt{2}}\)

8 tháng 8 2018

Làm nốt nè :3

\(2.a.P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x}=\dfrac{x-1}{x}\left(x>0;x\ne1\right)\)\(b.P>\dfrac{1}{2}\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{x-2}{2x}>0\)

\(\Leftrightarrow x-2>0\left(do:x>0\right)\)

\(\Leftrightarrow x>2\)

\(3.a.A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right):\dfrac{\sqrt{a}+1}{a-1}=\dfrac{\sqrt{a}-1}{\sqrt{a}-1}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\sqrt{a}-1\left(a>0;a\ne1\right)\)

\(b.Để:A< 0\Leftrightarrow\sqrt{a}-1< 0\Leftrightarrow a< 1\)

Kết hợp với DKXĐ : \(0< a< 1\)

25 tháng 10 2018

a)ĐK : a > 0

A = \(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

= \(a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)

26 tháng 10 2022

b: ĐểA=2 thì a-căn a-2=0

=>a-2 căn a+căn a-2=0

=>căn a-2=0

=>a=4

c: \(A=a-\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}>=-\dfrac{1}{4}\)

Dấu = xảy ra khi a=1/4