K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{1}{P}=\dfrac{2\sqrt{x}}{\sqrt{x}+1}=\dfrac{2.\left(\sqrt{x}+1\right)-2}{\sqrt{x}+1}=2-\dfrac{2}{\sqrt{x}+1}\)(\(x>0;\sqrt{x}+1>1\))

\(\dfrac{1}{P}\in Z\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\) (do mẫu thức lớn hơn 1 nên có thế làm  theo cách này)theo điều kiện ta chỉ có 1 TH:

\(\sqrt{x}+1=2\Leftrightarrow x=1\left(TM\right)\)

vậy.............

 

19 tháng 7 2022

\(P=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)

\(\Rightarrow\dfrac{1}{P}=\dfrac{2\sqrt{x}}{\sqrt{x}+1}=\dfrac{2\sqrt{x}+2-2}{\sqrt{x}+1}=2-\dfrac{2}{\sqrt{x}+1}\)

Để \(\dfrac{1}{P}\) nguyên

\(\Leftrightarrow\sqrt{x}+1\in\text{Ư}\left(2\right)\)

Ta có bảng : 

                            \(\sqrt{x}+1\)    1   -1  2      -2
                               x    0   Không có  1     không có

 

 

 

6 tháng 7 2021

a) \(Q=\) \(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\left(x>0;x\ne1\right)\)

\(Q=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\) 

\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(Q=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(Q=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(Q=\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) \(=\dfrac{2}{x-1}\)  \(\left(đpcm\right)\).

b) Để \(Q\in Z\) <=> \(\dfrac{2}{x-1}\in Z\) <=> \(x-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Ta có bảng sau:

 x -1           1           -1           2          -2
 x        2(TM)     0(ko TM)        3(TM)     -1(koTM)

 

Vậy để biểu thức Q nhận giá trị nguyên thì \(x\in\left\{2;3\right\}\) 

 

 

 

24 tháng 10 2023

loading...  loading...  loading...  

a) Ta có: \(A=\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}\right):\dfrac{2\left(x-2\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\dfrac{2\left(\sqrt{x}-1\right)+2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}:\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}\)

\(=\dfrac{4\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{1}{2\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)^2}\)

a) Ta có: \(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\dfrac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right):\left(\dfrac{25-x-\left(x-9\right)+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-\dfrac{\sqrt{x}+5}{\sqrt{x}+5}\right):\left(\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\right)\)

\(=\dfrac{\sqrt{x}-\sqrt{x}-5}{\sqrt{x}+5}:\dfrac{x+9}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5}{\sqrt{x}+5}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{x+9}\)

\(=\dfrac{-5\left(\sqrt{x}-3\right)}{x+9}\)

29 tháng 6 2021

b, ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)

Ta có : \(B=\dfrac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{x+2}{\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+4}{\sqrt{x}}-\dfrac{x-2\sqrt{x}+4}{\sqrt{x}}+\dfrac{x+2}{\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+4-x+2\sqrt{x}-4+x+2}{\sqrt{x}}\)

\(=\dfrac{x+4\sqrt{x}+2}{\sqrt{x}}\)

 

b) Ta có: \(B=\dfrac{x\sqrt{x}-8}{x-2\sqrt{x}}-\dfrac{x\sqrt{x}+8}{x+2\sqrt{x}}+\dfrac{x+2}{\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+4}{\sqrt{x}}-\dfrac{x-2\sqrt{x}+4}{\sqrt{x}}+\dfrac{x+2}{\sqrt{x}}\)

\(=\dfrac{4\sqrt{x}+x+2}{\sqrt{x}}\)

c) Ta có: \(C=\dfrac{1}{\sqrt{x}+2}-\dfrac{5}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}-2}{3-\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-3-5+\left(x-4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)

6 tháng 11 2021

a)ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

 \(\Rightarrow A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{x+\sqrt{x}-2\sqrt{x}+2-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Rightarrow A=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

b) \(x=9\Rightarrow A=\dfrac{3}{3+1}=\dfrac{3}{4}\)

\(x=7-4\sqrt{3}\Rightarrow A=\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{7-4\sqrt{3}}+1}=\dfrac{\sqrt{7-2\sqrt{12}}}{\sqrt{7-2\sqrt{12}}+1}=\dfrac{\sqrt{4-2\sqrt{3}\sqrt{4}+3}}{\sqrt{4-2\sqrt{3}\sqrt{4}+3}+1}=\dfrac{2-\sqrt{3}}{2-\sqrt{3}+1}=\dfrac{2-\sqrt{3}}{3-\sqrt{3}}=\dfrac{\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}=\dfrac{3-\sqrt{3}}{6}\)

Để P nguyên thì \(2\sqrt{x}-1⋮\sqrt{x}+1\)

\(\Leftrightarrow-3⋮\sqrt{x}+1\)

\(\Leftrightarrow\sqrt{x}+1\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow\sqrt{x}+1\in\left\{1;3\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;2\right\}\)

hay \(x\in\left\{0;4\right\}\)

1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)

\(\Leftrightarrow x+2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow x=1\left(nhận\right)\)

2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)

a: \(B=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-2x}{x-9}=\dfrac{x-3\sqrt{x}}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

b: \(P=A\cdot B=\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\)

Để |P|>P thì P<0

=>căn x-2<0

=>0<x<4

=>x=1