\(\sqrt{2019^2+2019^2.2020^2+2020^2}\in N\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

\(\sqrt{2019^2+2019^2.2020^2+2020^2}=\sqrt{2019^2+\left(2020-1\right)^2.2020^2+2020^2}=\sqrt{2019^2+2020^4-2.2020.2020^2+2020^2+2020^2}=\sqrt{2020^4+2.2020^2-2.\left(2019+1\right).2020^2+2019^2}=\sqrt{2020^4+2.2020^2-2.2019.2020^2-2.2020^2+2019^2}=\sqrt{2020^4-2.2019.2020^2+2019^2}=\sqrt{\left(2020^2-2019\right)^2}=\left|2020^2-2019\right|=2020^2-2019\)

Vì 20202-2019\(\in N\)

Vậy \(\sqrt{2019^2+2019^2.2020^2+2020^2}\)\(\in N\)

18 tháng 11 2018

Hướng dẫn:

Dat:   \(2019=a\)

Ta có:   \(a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2\)

\(=a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2\)

\(=a^2\left(a^2+2a+2\right)+\left(a+1\right)^2\)

\(=a^4+2a^2\left(a+1\right)+\left(a+1\right)^2\)

\(=\left(a^2+a+1\right)^2\)

9 tháng 10 2020

Bài 1: Ta có: \(\sqrt{2020}-\sqrt{2019}=\frac{1}{\sqrt{2020}+\sqrt{2019}};\)\(\sqrt{2018}-\sqrt{2017}=\frac{1}{\sqrt{2018}+\sqrt{2017}}\)

Dễ thấy \(\sqrt{2020}+\sqrt{2019}>\sqrt{2018}+\sqrt{2017}\)nên \(\frac{1}{\sqrt{2020}+\sqrt{2019}}< \frac{1}{\sqrt{2018}+\sqrt{2017}}\)

Suy ra\(\sqrt{2020}-\sqrt{2019}< \sqrt{2018}-\sqrt{2017}\)

Bài 2: Xét biểu thức \(\sqrt{a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2}=\sqrt{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}=\sqrt{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1\)(Vì \(a^2+a+1>0\forall a\inℝ\))

Áp dụng công thức tổng quát trên, ta được: \(\sqrt{2019^2+2019^2.2020^2+2020^2}=2019^2+2019+1\)(là số tự nhiên) (đpcm)

17 tháng 7 2019

1) Ta có: \(2020^2=\left(2019+1\right)^2=2019^2+2.2019+1.\)

\(\Rightarrow1+2019^2=2020^2-2.2019\)

\(\Rightarrow M=\sqrt{1+2019^2+\frac{2019^2}{2020^2}}+\frac{2019}{2020}=\sqrt{2020^2-2.2019+\frac{2019^2}{2020^2}}+\frac{2019}{2020}\)

\(=\sqrt{2020^2-2.2020.\frac{2019}{2020}+\left(\frac{2019}{2020}\right)^2}+\frac{2019}{2020}\)

\(=\sqrt{\left(2020-\frac{2019}{2020}\right)^2}+\frac{2019}{2020}=2020-\frac{2019}{2020}+\frac{2019}{2020}\)

\(=2020\)

Vậy M=2020.

2) Xét  : \(k\in N;k\ge2\)ta có:

\(\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{\left(k-1\right)k}-\frac{2}{k}\)

                                          \(=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2}{k-1}-\frac{2}{k-1}+\frac{2}{k}-\frac{2}{k}\)

\(\Rightarrow\left(1+\frac{1}{k-1}-\frac{1}{k}\right)^2=1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)

\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=1+\frac{1}{k-1}+\frac{1}{k}\)

Cho \(k=3,4,...,2020.\)Ta có:

\(N=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2019^2}+\frac{1}{2020^2}}\)

\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2018}-\frac{1}{2019}\right)+\left(1+\frac{1}{2019}-\frac{1}{2020}\right)\)

\(=2018+\frac{1}{2}-\frac{1}{2020}=2018\frac{1009}{2020}\)

Vậy \(N=2018\frac{1009}{2020}.\)

21 tháng 6 2019

1/ Bình phương hai vế, ta cần chứng minh \(a+b+2\sqrt{ab}>a+b\Leftrightarrow2\sqrt{ab}>0\)

Mà ta có \(2\sqrt{ab}\ge0\text{ Nhưng theo đề bài dấu "=" không xảy ra nên ta có đpcm. }\)

10 tháng 8 2020

1,Ta có : \(\sqrt{11}-\sqrt{10}=\frac{11-10}{\sqrt{11}+\sqrt{10}}=\frac{1}{\sqrt{11}+\sqrt{10}}\)

\(\sqrt{6}-\sqrt{5}=\frac{6-5}{\sqrt{6}-\sqrt{5}}=\frac{1}{\sqrt{6}-\sqrt{5}}\)

Dễ thấy : \(11+10>6+5\Rightarrow\sqrt{11}+\sqrt{10}>\sqrt{6}+\sqrt{5}\)

từ đó suy ra : \(\frac{1}{\sqrt{11}+\sqrt{10}}< \frac{1}{\sqrt{6}+\sqrt{5}}\)( theo so sánh phân số có cùng tử )

Vậy...

2,\(\sqrt{2019}+\sqrt{2021}và2\sqrt{2020}\)

Giả sử : \(\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)

\(\Leftrightarrow\left(\sqrt{2019}+\sqrt{2021}\right)^2< \left(2\sqrt{2020}\right)^2\) ( bình phương 2 vế )

\(\Leftrightarrow2019+2021+2\sqrt{2019.2021}< 4.2020\)

\(\Leftrightarrow4040+2\sqrt{2020^2-1^2}< 8080\)

\(\Leftrightarrow\)\(4040+\left(-4040\right)+2\left|2020-1\right|< 8080+\left(-4040\right)\)

( cộng cả hai vế với -4040)

\(\Leftrightarrow2.2019< 4040\)

\(\Leftrightarrow\frac{1}{2}.2.2019< 4040.\frac{1}{2}\)( nhân hai vế với 1/2)

\(\Leftrightarrow2019< 2020\) ( luôn đúng )

=> điều giả sử đúng

Vậy....

4,Ta có : \(\sqrt{2020}-\sqrt{2019}=\frac{2020-2019}{\sqrt{2020}+\sqrt{2019}}=\frac{1}{\sqrt{2020}+\sqrt{2019}}\)

\(\sqrt{2019}-\sqrt{2018}=\frac{2019-2018}{\sqrt{2019}+\sqrt{2018}}=\frac{1}{\sqrt{2019}+\sqrt{2018}}\)

dễ thấy \(2020+2019>2019+2018\Rightarrow\sqrt{2020}+\sqrt{2019}>\sqrt{2019}+\sqrt{2018}\) Từ đó suy ra : \(\frac{1}{\sqrt{2020}+\sqrt{2019}}< \frac{1}{\sqrt{2020}-\sqrt{2019}}\)

theo ss phân số có cùng tử

Vậy....

phần 5 làm tương tự như phần 4 nhé

AH
Akai Haruma
Giáo viên
18 tháng 8 2019

Lời giải:
Đặt \(\sqrt{2019}=a; \sqrt{2020}=b\) $(a,b>0)$

Ta có:
\(A-B=\frac{a^2}{b}+\frac{b^2}{a}-a-b\)

\(=(\frac{a^2}{b}-b)+(\frac{b^2}{a}-a)=\frac{a^2-b^2}{b}-\frac{a^2-b^2}{a}=(a^2-b^2)(\frac{1}{b}-\frac{1}{a})=\frac{(a-b)^2(a+b)}{ab}>0\) với mọi $a\neq b; a,b>0$

Do đó A>B$

NV
13 tháng 10 2019

Ta có \(4m-m^2-5=-\left(m-2\right)^2-1< 0\) \(\forall m\)

\(\Rightarrow f\left(x\right)\) nghịch biến trên R \(\Rightarrow f\left(a\right)>f\left(b\right)\Leftrightarrow a< b\)

\(2-\sqrt{2019}>2-\sqrt{2020}\Rightarrow f\left(2-\sqrt{2019}\right)< f\left(2-\sqrt{2020}\right)\)