K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

có \(x^4+x^2\ge0\)

=> đa thức trên <0 

=> đt trên vô nghiệm

chú ý: đây là toán lớp 8 mà

21 tháng 4 2016

  Ta có: x2+x+x+1+4                                                                                                                                                                                      \(\leftrightarrow\) (x2+x)+(x+1)+4                                                                                                                                                                              \(\leftrightarrow\) x.(x+1)+(x+1)+4                                                                                                                                                                            \(\leftrightarrow\) (x+1).(x+1)+4\(\leftrightarrow\) (x+1)2+4                                                                                                                                                             Vì (x+1)2 luôn >hoặc = 0 \(\Rightarrow\) (x+1)2+4 luôn > hoặc = 4                                                                                                                           Vậy đa thức vô nghiệm

                                                                                                                              

21 tháng 4 2016

Hồi cô dạy mình vì mũ 2 mà cộng nữa chắn chắn sẽ lớn hơn 0

jfksgdksdbgkj

vô nghiệm khi nào vậy bạn

Đề thiếu rồi bạn ạ

31 tháng 3 2016

No co nghiem chu ban 

20 tháng 7 2016

a, Ta có: f(x)= x2-10x+27 = (x-5)2+2>0

=> pt vô nghiệm

b, g(x)=x2+(2/3)x+4/9=x2+2.(1/3).x+1/9+1/3

           = (x+1/3)2+1/3>0

=> pt vô nghiệm.

20 tháng 7 2016

\(a,f\left(x\right)=x^2-10x+27\)

\(\Rightarrow f\left(x\right)=x^2-5x-5x+25+2\)

\(\Rightarrow f\left(x\right)=x\left(x-5\right)-5\left(x-5\right)+2\)

\(\Rightarrow f\left(x\right)=\left(x-5\right)^2+2\ge2>0\)  (Vì \(\left(x-5\right)^2\ge0\)  \(Vx\) )

Vậy đa thức f(x) vô nghiệm

\(b,g\left(x\right)=x^2+\frac{2}{3}x+\frac{4}{9}\)

\(\Rightarrow g\left(x\right)=x^2+\frac{1}{3}x+\frac{1}{3}x+\frac{1}{9}+\frac{3}{9}\)

\(\Rightarrow g\left(x\right)=x\left(x+\frac{1}{3}\right)+\frac{1}{3}\left(x+\frac{1}{3}\right)+\frac{1}{3}\)

\(\Rightarrow g\left(x\right)=\left(x+\frac{1}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}>0\)  (Vì \(\left(x+\frac{1}{3}\right)^2\ge0\)  \(Vx\) )

Vậy đa thức g(x) vô nghiệm

6 tháng 5 2015

​​vậy ,dài lắm,mình có cách ngắn hơn nhiều 

  • x4 lớn hơn hoặc bằng 0
  • x2 lớn hơn hoặc bằng 0

  • nên x4+x2+2 lớn hơn hoặc bằng 2 ,vậy nên đa thức vô nghiệm
9 tháng 5 2015

Ta có:

  •  \(x^4\ge0\)
  •  \(x^2\ge0\)

\(\Rightarrow x^4+x^2\ge0\)

\(x^4+x^2+2\ge2\)

Vậy đa thức trên vô nghiệm

\(C\left(x\right)=2x^2+4x+7=2x^2+4x+2+5\)

\(C\left(x\right)=2\left(x^2+2x+1\right)+5=2\left(x^2+x+x+1\right)+5\)

\(C\left(x\right)=2\left[x\left(x+1\right)+\left(x+1\right)\right]+5\)

\(C\left(x\right)=2\left(x+1\right)^2+5\). Vì \(2\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2+5\ge5>0\forall x\)

=> Đa thức không có nghiệm

( Nếu là lớp 8 thì dùng hằng đẳng thức ra ngay nhưng mà bạn lớp 7 thì mình phân tích ra nhé )

12 tháng 6 2016

\(P\left(x\right)=\)\(x^3+2x^2+3x+2=x^3+x^2+x^2+x+2x+x\)
\(=x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)\(=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
do x2+x+1>0