K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
27 tháng 12 2018
Bạn tham khảo tại đây:
Câu hỏi của Pun Cự Giải - Toán lớp 10 | Học trực tuyến
Lời giải:
Ta có:
\(\overrightarrow{CI}=\overrightarrow{CB}+\overrightarrow{BI}=\overrightarrow{CB}+2\overrightarrow{BG}\)
\(=\overrightarrow{CB}+2. \frac{2}{3}\overrightarrow{BM}=\overrightarrow{CB}+ \frac{2}{3}(\overrightarrow{BM}+\overrightarrow{BM})\)
\(=\overrightarrow{CB}+\frac{2}{3}(\overrightarrow{BA}+\overrightarrow{AM}+\overrightarrow{BC}+\overrightarrow{CM})\)
\(=-\overrightarrow{BC}+\frac{2}{3}\overrightarrow {BC}+\frac{2}{3}\overrightarrow{BA}+\frac{2}{3}(\overrightarrow{AM}+\overrightarrow{CM})\)
\(=\frac{-1}{3}\overrightarrow{BC}+\frac{2}{3}\overrightarrow{BA}\) (tổng 2 vecto đối nhau thì bằng $0$)
\(=\frac{-1}{3}(\overrightarrow{BA}+\overrightarrow{AC})+\frac{2}{3}\overrightarrow{BA}\)
\(=\frac{1}{3}\overrightarrow{AC}+\overrightarrow{BA}=\frac{-1}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{BA}=\frac{-1}{3}\overrightarrow{AC}+\frac{-1}{3}\overrightarrow{AB}\)
Hình vẽ: