Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5 4^2=16 vậy căn 11+căn 5=4
2/ tương tự (3 căn3 )^2=27 (căn19)^2-(căn 2)^2=19-2=17 vậy 3 căn 3 >căn 19-căn2
Phép 1:
Ta có: \(3\cdot\sqrt{7-4\sqrt{3}}\)
\(=3\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)
\(=3\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=3\cdot\left|2-\sqrt{3}\right|\)
\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))
\(=6-3\sqrt{3}\)
Phép 2:
Ta có: \(\sqrt{11+4\sqrt{7}}\)
\(=\sqrt{7+2\cdot\sqrt{7}\cdot2+4}\)
\(=\sqrt{\left(\sqrt{7}+2\right)^2}\)
\(=\left|\sqrt{7}+2\right|\)
\(=\sqrt{7}+2\)(Vì \(\sqrt{7}+2>0\))
Phép 3:
Ta có: \(2\cdot\sqrt{11-4\sqrt{7}}\)
\(=2\cdot\sqrt{7-2\cdot\sqrt{7}\cdot2+4}\)
\(=2\cdot\sqrt{\left(\sqrt{7}-2\right)^2}\)
\(=2\cdot\left|\sqrt{7}-2\right|\)
\(=2\cdot\left(\sqrt{7}-2\right)\)(Vì \(\sqrt{7}>2\))
\(=2\sqrt{7}-4\)
Phép 4:
Ta có: \(\sqrt{19-4\sqrt{15}}\)
\(=\sqrt{15-2\cdot\sqrt{15}\cdot2+4}\)
\(=\sqrt{\left(\sqrt{15}-2\right)^2}\)
\(=\left|\sqrt{15}-2\right|\)
\(=\sqrt{15}-2\)(Vì \(\sqrt{15}>2\))
\(6-\sqrt{17}=\sqrt{36}-\sqrt{17}>\sqrt{31}-\sqrt{17}>\sqrt{31}-\sqrt{19}\)
HAY \(6-\sqrt{17}>\sqrt{31}-\sqrt{19}\)
\(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)\)
= \(\left(\sqrt{19}\right)^2-3^2\)
= \(19-9\)
= 10