Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=2(1+2^2)+2^5(1+2^2)+...+2^29(1+2^2)
=5(2+2^5+...+2^29)
=10(1+2^4+...+2^28) chia hết cho 10
Bài 1)
a) Ta có: \(A=m^2+m+1=m(m+1)+1\)
Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn
Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$
b)
Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1
Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3
Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2
Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3
Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1
Như vậy tóm tại $A$ không chia hết cho 5
Bài 2:
a) \(P=2+2^2+2^3+...+2^{10}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)
\(=3(2+2^3+2^5+..+2^9)\vdots 3\)
Ta có đpcm
b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)
\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)
\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)
Ta có dpcm.
a) A = \(\left(2+2^2+2^3+...+2^5\right)+\left(2^6+2^7+...+2^{10}\right)\)
\(=\left(2.31\right)+2^5.31=31.\left(2+2^5\right)\)
Vậy A chia hết cho 31
Sửa đề: \(B=2+2^2+2^3+...+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+2^5\cdot\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{97}\right)⋮5\)
\(B=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=31\left(2+2^6+...+2^{96}\right)⋮31\)
a=2+2^2+2^3+...+2^10
a=(2+2^2)+(2^3+2^4)+...+(2^9+2^10)
a=2.(1+2)+2^3.(1+2)+...+2^9.(1+2)
a=3.(2+2^3+...+2^9)
=> a chia hết cho 3
a=2+2^2+2^3+...+2^10
a=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)
a=2.(1+2+4+8+16)+2^6.(1+2+4+8+16)
a=31.(2+2^6)
=> a chia hết cho 31
chúc bạn học tốt nha
a,
A = 2 + 22 + 23 +...+210
A = (2 + 22 ) + (23 +24 ) + ...+ (29 + 210 )
A = 2 ( 1+2 ) + 23(1+2 ) + ...+ 29(1+2)
A = 2 .3 + 23 .3 + ...+29.3
A = 3 ( 2+ 23 + ...+ 29 ) \(⋮\) 3 3
Vậy A \(⋮\) 3
b, A = 2 + 22 + 23 +...+210
A = ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 )
A = 2 ( 1+2+22 + 23 + 24 ) + 26(1+2+22 + 23 + 24)
A = 2 . 31 + 26 .31
A = 31(2+26 ) \(⋮\) 31
vậy A \(⋮\) 31
d , A = 2 + 22 + 23 +...+210
`B = 2 + 2^3 + 2^5 + 2^7 + ... + 2^31`.
`<=> (2 + 8) + 2^4(2 + 8) + 2^8(2 + 8) + ... + 2^28(2 + 8)`.
`<=> (1 + 2^4 + 2^8 + ... + 2^28)(2+8)`
`<=> 10 . (1 + 2^4 + 2^8 + ... + 2^28)`.
Vì `(1 + 2^4 + ... + 2^28) in ZZ`.
`=> 10 . (1+2^4 + ... + 2^28) vdots 10`.