nhờ cá...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2023

\(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)

\(=\sqrt{\dfrac{\left(3\sqrt{3}-4\right)\left(2\sqrt{3}-1\right)}{\left(2\sqrt{3}+1\right)\left(2\sqrt{3}-1\right)}}\)\(-\sqrt{\dfrac{\left(\sqrt{3}+4\right)\left(5+2\sqrt{3}\right)}{\left(5-2\sqrt{3}\right)\left(5+2\sqrt{3}\right)}}\)

\(=\sqrt{\dfrac{18-3\sqrt{3}-8\sqrt{3}+4}{\left(2\sqrt{3}\right)^2-1}}\)\(-\sqrt{\dfrac{5\sqrt{3}+6+20+8\sqrt{3}}{5^2-\left(2\sqrt{3}\right)^2}}\)

\(=\sqrt{\dfrac{22-11\sqrt{3}}{11}}\)\(-\sqrt{\dfrac{26+13\sqrt{3}}{13}}\)

\(=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1}-\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{3}-1-\sqrt{3}-1\right)=-\sqrt{2}\)

10 tháng 8 2023

Ý còn lại đợi trưa nhá đi nấu cơm đã

7 tháng 6 2017

\(\sqrt{18-2\sqrt{65}}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{13}\right)^2}\)

\(=\sqrt{13}-\sqrt{5}\)

20 tháng 9 2017

Sao bh lại làm đề ôn thi vào 10

20 tháng 9 2017

;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))

6 tháng 8 2017

đặt \(\left\{{}\begin{matrix}u=\sqrt{x+8}\\v=\sqrt{x+3}\end{matrix}\right.\) khi đó phương trình đã cho trở thành :

(u-v)(uv+1)=5 và có u2-v2=5 nên suy ra :

(u-v)(uv+1)=(u-v)(u+v) <=> (u-v)(uv+1-u-v)=0

=> u-v=0 hoặc uv+1-u-v =0 . đến đây bạn thay căn vào giải nha mk ngại viết căn.haha

7 tháng 8 2017

Cảm ơn bạn nhìu nha ♥ vui

AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Ta có \(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+\frac{1}{4ab}+4ab\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\geq \frac{4}{a^2+b^2+2ab}=\frac{4}{(a+b)^2}\geq 4\)

Áp dụng BĐT AM-GM: \(\frac{1}{4ab}+4ab\geq 2\).

\(1\geq a+b\geq 2\sqrt{ab}\rightarrow ab\leq \frac{1}{4}\)

Do đó \(P\geq 4+1+2=7\) hay \(P_{\min}=7\)

Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)

11 tháng 7 2017

hahacảm ơn bn nhiều lắm

11 tháng 6 2017

bạn ơi sai đề

\(\sqrt{x-10}\ge0\) ( với x >= 10 ).

11 tháng 6 2017

bạn ơi sai đề rồi ; căn bật sao âm được

8 tháng 8 2023

Chắc câu c quá, tại tổng 2 ô vuông của hình chữ nhật có 10 chấm tròn. =)

8 tháng 8 2023

Em nghĩ là câu c vì thấy tổng của các chấm tròn ở mỗi miếng đều là 10.