K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Hai đường thẳng đó cắt nhau và tạo ra một góc 90. 2. Hai đường thẳng đó chứa hai tia phân giác của hai góc kề.

2. Hai đường thẳng đó chứa hai tia phân giác của hai góc kề bù

33. Hai đường thẳng đó chứa hai cạnh của tam giác vuông. 4. Tính chất từ vuông góc đến song song : Có một đường thẳng thứ 3 vừa song song với đường thẳng thứ nhất vừa vuông góc với đường thẳng thứ hai. 5. Sử dụng tính chất đường trung trực của đoạn thẳng. Tính chất : Mọi điểm cách đều hai đầu mút của đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó. 6. Sử dụng tính chất trực tâm của tam giác. 7. Sử dụng tính chất đường phân giác, trung tuyến ứng với cạnh đáy của tam giác cân. 8. Hai đường thẳng đó chứa hai đường chéo của hình vuông, hình thoi. 9. Sử dụng tính chất đường kính và dây cung trong đường tròn. 10. Sử dụng tính chất tiếp tuyến trong đường tròn

 

`@` `\text {Ans}`

`\downarrow`

`10,`

`@` Tiên đề Euclid được phát biểu như sau:

`-` Qua một điểm nằm ngoài 1 đường thẳng, chỉ có duy nhất `1` đường thẳng song song với đường thẳng đó.

`11,`

 Định lý tổng `3` góc trong `1` `\triangle`

`-` Trong `1` `\triangle`, tổng số đo của `3` góc là `180^0`

`12,`

Các TH bằng nhau của `\triangle` thường:

`+` Cạnh - Cạnh - Cạnh

`+` Cạnh - Góc - Cạnh

`+` Góc - Cạnh - Góc

Các TH bằng nhau của `\triangle` vuông:

`+` Cạnh - Góc - Cạnh

`+` Góc - Cạnh - Góc

`+` Cạnh huyền - Góc vuông

`+` Cạnh góc vuông - Góc nhọn

`+` Cạnh huyền - Cạnh góc vuông

`+` Hai cạnh góc vuông

15:

Hình hộp chữ nhật

Sxq=(a+b)*2*h

Stp=Sxq+2*a*b

V=a*b*h

Hình lập phương

Sxq=a^2*4

Stp=a^2*6

V=a^3

Hình lăng trụ đứng tam giác

Sxq=C đáy*h

Stp=Sxq+2*S đáy

14:

Các đừog đồng quy là các đường cao, các đường trung tuyến, các đường phân giác, các đường trung trực

Các đường cao thì cắt nhau ở trực tâm của tam giác

Các đường trung tuyến thì cắt nhau ở trọng tâm của tam giác

Các đường phân giác thì cắt nhau ở tâm đừog tròn nội tiếp của tam giác

Các đường trung trực thì cắt nhau ở tâm đường tròn ngoại tiếp của tam giác

10:

Qua một điểm nằm ngoài một đường thẳng, có một và chỉ một đường thẳng đi qua nó và song song với đường thẳng đã cho

11:

Tổng ba góc trong một tam giác bằng 180 độ

23 tháng 12 2017

muốn cm 2 đường thẳng vuông gọc ta chứng minh có 1 góc tạo thành bằng 90 đọ

chúc bạn học tốt

^_^ !

23 tháng 12 2017


18 PHƯƠNG PHÁP CHỨNG MINH HAI ĐƯỜNG THẲNG VUÔNG GÓC
 

  1. Tính chất của hai tia phân giác của hai góc kề bù.
  2. Hai đường thẳng cắt nhau tạo thành một góc bằng 90 độ
  3. Tổng của hai góc phụ nhau bằng 90 độ
  4. Đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với
  5. đường thẳng thứ ba
  6. Tính chất góc nội tiếp chắn nửa đường tròn.
  7. Định nghĩa ba đường cao trong tam giác, định nghĩa đường trung trực của đoạn thẳng.
  8. Định lý Pitago.
  9. Tính chất đường kính của một đường tròn đi qua trung điểm của một dây cung.
  10. Tính chất tiếp tuyến của đường tròn.
  11. Tiếp tuyến chung và đường nối tâm của hai đường tròn, dây cung chung và đường nối
  12. tâm của hai đường tròn.
  13. Sử dụng hai góc kề bù bằng nhau.
  14. Sử dụng định lí tổng ba góc trong một tam giác bằng 180 độ
  15. Sử dụng các góc vuông cho trước
  16. Sử dụng chứng minh một tam giác bằng một tam giác vuông
  17. Sử dụng tính chất tam giác cân
  18. Sử dụng tính chất giao điểm ba đường cao của tam giác
  19. Sử dụng phép quay góc vuông hoặc góc quay vuông
  20. Chứng ming phản chứng
8 tháng 12 2017

Giải

a) Vì Ot là phân giác của ˆxOyxOy^

nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^

Ot' là phân giác của ˆxOy′xOy′^

nên ˆxOt′xOt′^ = ˆy′Ot′y′Ot′^ = 1212ˆxOy′xOy′^

=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212ˆxOyxOy^ + 1212ˆxOy′xOy′^ = 1212(ˆxOyxOy^ + ˆxOy′xOy′^)

mà (ˆxOyxOy^ + ˆxOy′xOy′^) =  180(2 góc kề bù)

=>  ˆxOtxOt^ + ˆxOt′xOt′^ = 12121800   900

Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông

b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'

Thật vậy: M ε Ot do Ot là phân giác của ˆxOyxOy^ nên M cách đều Ox, Oy

=> M cách đều xx',yy'

M ε Ot'do Ot' là phân giác của ˆxOy′xOy′^ nên M cách đều xx', yy'

=> M cách đều xx',yy'

c) M cách đều hai đường thẳng xx', yy'

Nếu M nằm trong một góc trong bốn góc ˆxOyxOy^, ˆxOy′xOy′^, ˆx′Oy′x′Oy′^,  ˆx′Oyx′Oy^  thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'

d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0

e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.

8 tháng 12 2017

a) Vì Ot là phân giác của ˆxOyxOy^
nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^
Ot' là phân giác của ˆxOy′xOy′^
nên ˆxOt′xOt′^ = ˆy′Ot′y′Ot′^ = 1212ˆxOy′xOy′^
=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212ˆxOyxOy^ + 1212ˆxOy′xOy′^ = 1212(ˆxOyxOy^ + ˆxOy′xOy′^)
mà (ˆxOyxOy^ + ˆxOy′xOy′^) = 180
0
(2 góc kề bù)
=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212180
0 = 90
0
Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông
b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'
Thật vậy: M ε Ot do Ot là phân giác của ˆxOyxOy^ nên M cách đều Ox, Oy
=> M cách đều xx',yy'
M ε Ot'do Ot' là phân giác của ˆxOy′xOy′^ nên M cách đều xx', yy'
=> M cách đều xx',yy'
c) M cách đều hai đường thẳng xx', yy'
Nếu M nằm trong một góc trong bốn góc ˆxOyxOy^, ˆxOy′xOy′^, ˆx′Oy′x′Oy′^, ˆx′Oyx′Oy^ thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'
d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0
e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo
bởi hai đường thẳng cắt nhau đó.

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai Ia) Chứng minh tam giác ABD = tam giác ACEb) Chứng minh I là trung điểm của BCc) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCHd) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CFBài 2: Tam giác ABC vuông tại A...
Đọc tiếp

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I

a) Chứng minh tam giác ABD = tam giác ACE

b) Chứng minh I là trung điểm của BC

c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH

d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF

Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K

a) Tính độ dài cạnh BC

b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC

c)  Chứng minh AC = DK

d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân

Các bạn làm hộ mình nha, mình cần gấp lắm

1

nhìu zữ giải hết chắc chết!!!

758768768978980

5 tháng 1 2018

1.Vì các tia phân giác của các góc B và C cắt nhau tại I

\(\Rightarrow\)I là giao của các đường phân giác trong tam giác

\(\Rightarrow\)AI là tia phân giác của góc A

20 tháng 6 2019

1.

Kẻ: \(ID\perp AB;IE\perp BC;IF\perp AC\)

\(\widehat{IDB}=\widehat{IEB}=90^0\)

\(\widehat{DBI}=\widehat{EIB}\left(gt\right)\)

BI cạnh huyền chung

⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)

Suy ra: ID = IE (hai cạnh tương ứng)       (1)

Xét hai tam giác vuông IEC và IFC, ta có ;

\(\widehat{IEC}=\widehat{IFC}=90^0\)

\(\widehat{ECI}=\widehat{FCI}\left(gt\right)\)

CI canh huyền chung

Suy ra:  ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng)           (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông IDA và IFA, ta có:

         \(\widehat{IDA}=\widehat{IFA}=90^0\)

            ID = IF (chứng minh trên)

            AI cạnh huyền chung

Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)

Suy ra\(\widehat{DAI}=\widehat{FAI}\) (hai góc tương ứng)

Vậy AI là tia phân giác của \(\widehat{A}\)