K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)

Do đó diện tích xq của hình nón là:

\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)

Đáp án C

mk nhầm câu c là 25f(x)

câu d là 24f(x)

mk nhầm nũa câu hỏi là cái f(x+2)-f(x) là bỏ nha

Câu 1: Cho a, b, c là ba số dương thỏa mãn điều kiện a, b và ab cùng khác 1. Trong các khẳng định sau, khẳng định nào đúng?\(A.log_{ab}c=\frac{log_ac+log_bc}{log_ac.log_bc}.\)                              \(B.log_{ab}c=\frac{log_ac.log_bc}{log_ac+log_bc}.\)\(C.log_{ab}c=\frac{\left|log_ac-log_bc\right|}{log_ac.log_bc}.\)                              \(D.log_{ab}c=\frac{log_ac.log_bc}{\left|log_ac-log_bc\right|}.\)Câu 2: Xét hàm...
Đọc tiếp

Câu 1: Cho a, b, c là ba số dương thỏa mãn điều kiện a, b và ab cùng khác 1. Trong các khẳng định sau, khẳng định nào đúng?

\(A.log_{ab}c=\frac{log_ac+log_bc}{log_ac.log_bc}.\)                              \(B.log_{ab}c=\frac{log_ac.log_bc}{log_ac+log_bc}.\)

\(C.log_{ab}c=\frac{\left|log_ac-log_bc\right|}{log_ac.log_bc}.\)                              \(D.log_{ab}c=\frac{log_ac.log_bc}{\left|log_ac-log_bc\right|}.\)

Câu 2: Xét hàm số \(f\left(x\right)=-x^4+4x^2-3.\)Khẳng định nào sau đây đúng?

A. Hàm số đồng biến trong khoảng \(\left(-\infty;\sqrt{2}\right).\)

B. Hàm số đồng biến trong khoảng \(\left(-\sqrt{2};+\infty\right).\)

C. Hàm số đồng biến trong từng khoảng \(\left(-\infty;-\sqrt{2}\right)\)và \(\left(0;\sqrt{2}\right).\)

D. Hàm số đồng biến trong từng khoảng \(\left(-\sqrt{2};0\right)\)và \(\left(\sqrt{2};+\infty\right)\)

1
22 tháng 6 2019

Lần sau em đăng trong h.vn

1. \(log_{ab}c=\frac{1}{log_cab}=\frac{1}{log_ca+log_cb}=\frac{1}{\frac{1}{log_ac}+\frac{1}{log_bc}}=\frac{1}{\frac{log_ac+log_bc}{log_ac.log_bc}}=\frac{log_ac.log_bc}{log_ac+log_bc}\)

Đáp án B: 

2. \(f'\left(x\right)=-4x^3+8x\)

\(f'\left(x\right)=0\Leftrightarrow-4x^3+8x=0\Leftrightarrow x=0,x=\sqrt{2},x=-\sqrt{2}\)

Có BBT: 

x -căn2 0 căn2 f' f 0 0 0 - + - +

Nhìn vào bảng biên thiên ta có hàm số ... là đáp án C

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q)...
Đọc tiếp

Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).

(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q) là:

\(a)\left(x+3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(b)\left(x+3\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=\frac{4}{9}\)

\(c)\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

\(d)\left(x-3\right)^2+\left(y-1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

Câu 2: Cho mặt cầu (S): \(x^2+y^2+z^2-2x+2y+1=0\)và điểm \(M\left(0;-1;0\right).\)

Phương trình mặt phẳng (P) tiếp xúc với (S) tại M là:

\(a)2x+y-z+1=0.\)                     \(b)x=0.\)            

\(c)-x+y+2z+1=0.\)              \(d)x+y+1=0\)

Câu 3: Trong khai triển \(f\left(x\right)=\frac{1}{256}\left(2x+3\right)^{10}\)thành đa thức, hệ số của x8 là:

\(a)103680.\)            \(b)405.\)             \(c)106380.\)            \(d)504.\)

Câu 4: Tổng các nghiệm của phương trình \(2^{x^2-3}.5^{x^2-3}=0,01.\left(10^{x-1}\right)^3\)là:

\(a)3.\)            \(b)5.\)            \(c)0.\)            \(d)2\sqrt{2}.\)

 

1
21 tháng 6 2019

Lần sau em đăng bài ở học 24 để mọi người giúp đỡ em nhé!

Link đây: Cộng đồng học tập online | Học trực tuyến

1. Gọi I là tâm của mặt cầu cần tìm

Vì I thuộc d

=> I( a; -1; -a)

Mặt cầu tiếp xúc với hai mặt phẳng (p), (Q). nên ta co:

d(I; (P))=d(I;(Q))

<=> \(\frac{\left|a+2\left(-1\right)+2\left(-a\right)+3\right|}{\sqrt{1^2+2^2+2^2}}=\frac{\left|a+2\left(-1\right)+2\left(-a\right)+7\right|}{\sqrt{1^2+2^2+2^2}}\)

\(\Leftrightarrow\frac{\left|-a+1\right|}{3}=\frac{\left|-a+5\right|}{3}\Leftrightarrow a=3\)

=> I(3; -1; -3) ; bán kinh : R=d(I; P)=2/3

=> Phương trình mặt cầu:

\(\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)

đáp án C.

2. Gọi I là tâm mặt cầu: I(1; -1; 0)

Ta có: Phương trình mặt phẳng (P) tiếp xúc vs mặt Cầu S tại M

=> IM vuông góc vs mặt phẳng (P)

=> \(\overrightarrow{n_p}=\overrightarrow{MI}=\left(1;0;0\right)\)

=> Phương trình mặt phẳng (P) có véc tơ pháp tuyến: \(\overrightarrow{n_p}\)và qua điểm M

1(x-0)+0(y+1)+0(z-0) =0<=> x=0

đáp án B

3.

 \(f\left(x\right)=\dfrac{1}{256}\left(2x+3\right)^{10}=\dfrac{1}{256} \sum \limits_{k=0} ^{10}C_{k}^{10}(2x)^k.3^{10-k}\)

Để có hệ số x^8 thì k=8 khi đó hệ số của x^8 là:

\(\dfrac{1}{256}C_{8}^{10}.2^8.3^{10-8}=405\)

đáp án D

4.

pt <=>  \(\left(2.5\right)^{x^2-3}=10^{-2}.10^{3x-3}\)

\(\Leftrightarrow10^{x^2-3}=10^{3x-5}\)

\(\Leftrightarrow x^2-3=3x-5\Leftrightarrow x^2-3x+5=0\)

=> theo định lí viet tổng các nghiệm bằng 3, tích các nghiệm bằng 5

Đáp án A

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

b/ $x^2-4x+20=0$

$\Leftrightarrow (x-2)^2+16=0\Leftrightarrow (x-2)^2=-16< 0$ (vô lý)

Do đó pt vô nghiệm.

c/ $2x^3-3x+1=0$

$\Leftrightarrow 2x^2(x-1)+2x(x-1)-(x-1)=0$

$\Leftrightarrow (x-1)(2x^2+2x-1)=0$

$\Rightarrow x-1=0$ hoặc $2x^2+2x-1=0$

$\Leftrightarrow x=1$ hoặc $x=\frac{-1\pm \sqrt{3}}{2}$

 

GIẢI MÃ KỲ THI ĐÁNH GIÁ NĂNG LỰC HSA - ĐHQGHN ĐỂ NHẬN THƯỞNG CÙNG HOC24!!!Thời gian gần đây, các bạn học sinh rất quan tâm tới kỳ thi đánh giá năng lực. Vì vậy, HOC24 đã tổ chức cuộc thi "Giải mã kỳ thi đánh giá năng lực HSA - ĐHQGHN". -       Mục đích: Tạo ra không gian để các bạn học sinh nêu những chia sẻ, những đánh giá khách quan và thiết thực về kỳ thi đánh giá năng lực HSA...
Đọc tiếp

loading...

GIẢI MÃ KỲ THI ĐÁNH GIÁ NĂNG LỰC HSA - ĐHQGHN ĐỂ NHẬN THƯỞNG CÙNG HOC24!!!

Thời gian gần đây, các bạn học sinh rất quan tâm tới kỳ thi đánh giá năng lực. Vì vậy, HOC24 đã tổ chức cuộc thi "Giải mã kỳ thi đánh giá năng lực HSA - ĐHQGHN".

-       Mục đích: Tạo ra không gian để các bạn học sinh nêu những chia sẻ, những đánh giá khách quan và thiết thực về kỳ thi đánh giá năng lực HSA của Đại học quốc gia Hà Nội ngày 10/3, đồng thời tìm được HSA REVIEWER xứng đáng.

-        Ý nghĩa: Cung cấp những thông tin hữu ích về đề thi HSA ĐGQGHN cho những bạn có ôn thi ĐGNL hoặc có nhu cầu tìm hiểu về kỳ thi đánh giá năng lực HSA.

-        Đối tượng: Các thí sinh đã tham dự kỳ thi HSA ĐHQGHN đợt 301.

-       Quy định: Viết một bài chia sẻ về kỳ thi ĐGNL HSA (đợt 301 ngày 10/3/2023) với nội dung chính là review đề thi: (1) mức độ khó so với đề mẫu, (2) nhận xét từng phần thi (Tư duy định tính, tư duy định lượng, khoa học)(3) Tỉ lệ theo mức độ câu hỏi; phân bổ kiến thức ở các khối lớp 10 - 11- 12; (4) nội dung câu hỏi (nhớ càng nhiều càng tốt, nhớ ý chứ ko cần chính xác), bài đọc lấy ở đâu, câu hỏi thuộc thể loại nào; (5) Bạn ấn tượng nhất về câu hỏi nào và tại sao; v.v.

Ngoài ra, bạn có thể viết bài chia sẻ kinh nghiệm thi:

+ Những kinh nghiệm khi bước vào phòng thi ĐGNL HAS (đồ dùng được mang vào, thủ tục, ...)

+ Kinh nghiệm khi thi: Thao tác với máy tính, tinh thần làm bài, ...

+ Lời khuyên cho các kỳ thi HAS- ĐHQGHN sắp tới: Ôn tập kiến thức, tinh thần, sức khỏe, luyện tập kĩ năng làm bài trên máy tính, ...

-       Đánh giá và giải thưởng:

BTC sẽ dựa trên số like cũng như đánh giá của các thầy cô giáo HOC24 để trao giải.

Giải thưởng gồm:

+ 1-3 giải nhất: 200 000 đồng

+ 5-10 giải nhì: 100 000 đồng

+ 10 - 20 giải ba: 50 coin

-     Thời gian: Cuộc thi diễn ra từ 14/3/2023 đến hết ngày 16/3/2023. Giải thưởng được công bố vào ngày 18/3/2023.

Chúc các bạn có các bài chia sẻ thật hay và dành được phần thưởng của hoc24!

24
14 tháng 3 2023

Không có ah nhé , đây là thi trên máy tính và bất kì ai tiết lộ đề thì sẽ hủy tư cách thi và điểm thi anh nhé.

14 tháng 3 2023

lớp 6 thi được ko admin