K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ A và B dựng các đường sinh AA’ và BB’ ta có thiết diện qua AB và song song với trục là hình chữ nhật AA’BB’. Góc giữa AB và trục chính là góc  ∠ ABB′ . Do đó ∠ ABB′ = 30 ° . Vậy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó diện tích tứ giác AA’BB’ là S AA ' BB '  = AB′. BB′ = r.r 3 =  r 2 3

31 tháng 3 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt phẳng (ABB’) chứa AB và song song với trục OO’ của hình trụ. Gọi H là trung điểm của AB’. Ta có OH ⊥ (ABB′). Đường thẳng qua H song song với OO’ cắt AB tại I. Dựng IK // HO cắt OO’ tại K. Ta chứng minh được IK là đoạn vuông góc chung của AB và OO’.

Ta có: IK = HO = Giải sách bài tập Toán 12 | Giải sbt Toán 12

20 tháng 8 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Góc giữa hai bán kính đáy OA và O’B là ∠ AOB′ và  ∠ A′O′B

Vì AB’ = r nên AOB’ là tam giác đều , do đó  ∠ AOB′=60 °

1 tháng 4 2017

Theo công thức ta có:

Sxq = 2πrh = 2√3 πr2

Stp = 2πrh + 2πr2 = 2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2 ( đơn vị thể tích)

b) Vtrụ = πR2h = √3 π r3

c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1O2 và AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.

Ta có là trung điểm của , = IJ.

Theo giả thiết = 300.

do vậy: AB1 = BB1.tan 300 = = r.

Xét tam giác vuông

AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có: = - .

Vậy khoảng cách giữa AB và O1O2 :


26 tháng 4 2017

a) Theo đầu bài, hình trụ có chiều cao h = 7 cm và bán kính đáy r = 5 cm.

Vậy diện tích xung quanh bằng: Sxq= πrh = 35π (cm2)

Thể tích của khối trụ là:

V = πr2h = 175π (cm3)

b) Thiết diện là hình chữ nhật có một cạnh bằng chiều cao của hình trụ bằng 7 cm. Giả sử thiết diện là ABCD.

Ta có AD = 7 cm, OI = 3 cm.

Do tam giác OAI vuông tại A nên

AI2 = OA2 – OI2 = 25 – 9 = 16.

Vậy AI = 4 cm, AB = 8 cm.



26 tháng 4 2017

a) Theo đầu bài, hình trụ có chiều cao h = 7 cm và bán kính đáy r = 5 cm.

Vậy diện tích xung quanh bằng: Sxq= πrh = 35π (cm2)

Thể tích của khối trụ là:

V = πr2h = 175π (cm3)

b) Thiết diện là hình chữ nhật có một cạnh bằng chiều cao của hình trụ bằng 7 cm. Giả sử thiết diện là ABCD.

Ta có AD = 7 cm, OI = 3 cm.

Do tam giác OAI vuông tại A nên

AI2 = OA2 – OI2 = 25 – 9 = 16.

Vậy AI = 4 cm, AB = 8 cm.

7 tháng 10 2019

Giải bài 7 trang 39 sgk Hình học 12 | Để học tốt Toán 12

Giải bài 7 trang 39 sgk Hình học 12 | Để học tốt Toán 12

Giải bài 7 trang 39 sgk Hình học 12 | Để học tốt Toán 12

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

25 tháng 5 2017

28 tháng 6 2019