Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tần số góc của dao động
+ Tốc độ của vật m khi đi qua vị trí cân bằng
+ Tại vị trí cân bằng vật m’ rơi dính vào vật m. Quá trình này không làm thay đổi vị trí cân bằng của hệ.
Theo phương ngang, động lượng của hệ được bảo toàn → vận tốc của hai vật sau va chạm
Đáp án B
Giải thích: Đáp án B
Phương pháp: Sử dụng định luật bảo toàn động lượng
Cách giải:
Vận tốc của M khi qua VTCB:
Vận tốc của hai vật khi m dính vào M:
Cơ năng của hệ khi m dính vào M:
Đáp án A
Hướng dẫn:
Nhận thấy rằng với cách kích thích bằng va chạm cho con lắc lò xo nằm ngang, chỉ làm thay đổi tần số góc của hệ (do m thay đổi) chứ không làm thay đổi vị trí cân bằng của hệ.
+ Tần số góc của con lắc sau va chạm ω ' = k M + m = 40 0 , 4 + 0 , 1 = 4 5
Tốc độ của vật M khi đi qua vị trí cân bằng v M = ω A = k m A = 50 cm/s.
→ Vận tốc của hệ hai vật sau khi thả nhẹ vật m lên vật M tuân theo định luật bảo toàn độ lượng v 0 = M v M M + m = 40 cm/s
→ Biên độ dao động mới của hệ A ' = x ' 2 + v ' ω ' 2 , trong đó v′ và x′ được xác định ở cùng một thời điểm, do vậy nếu ta chọn thời điểm mà v ′ = v 0 thì x′ = 0 (do hệ M và M đang ở vị trí cân bằng) → A ' = 40 4 5 = 2 5 cm
Đáp án B
+ Xét con lắc lò xo trước va chạm:
Vận tốc của vật m ngay trước khi va chạm (ở VTCB): v 0 = A . ω = 5 . 10 = 50 ( c m / s )
+ Trong va chạm mềm, cấu tạo của con lắc lò xo thay đổi nên:
Áp dụng định luật bảo toàn khối lượng ta có:
Biên độ của con lắc sau va chạm:
Chọn đáp án D
? Lời giải:
+ Kéo vật đến vị trí lò xo giãn 5 cm rồi thả nhẹ, vật sẽ dao động quanh vị trí cân bằng với biên độ A = Δ l = 5 c m
+ Khi vật đi qua vị trí có li độ
lò xo tại điểm cách đầu cố định I một đoạn 0,75 chiều dài làm cho phần lò xo tham gia vào dao động mới của con lăc chỉ còn 0,25 → do đó thế năng của con lăc lúc sau chỉ còn lại là
+ Mặc khác độ cứng của lò xo tỉ lệ nghịch với chiều dài nên con lăc lúc sau sẽ có độ cứng gấp 4 lần con lắc lúc đầu
Chọn đáp án D
? Lời giải:
+ Kéo vật đến vị trí lò xo giãn 5 cm rồi thả nhẹ, vật sẽ dao động quanh vị trí cân bằng với biên độ A = Δ l = 5 c m
+ Khi vật đi qua vị trí có li độ x = A 2 = 2,5 cm, vật có độ năng Eđ = 3 E 4 và thế năng T t = E 4 → việc giữ chặt
lò xo tại điểm cách đầu cố định I một đoạn 0,75 chiều dài làm cho phần lò xo tham gia vào dao động mới của con lăc chỉ còn 0,25 → do đó thế năng của con lăc lúc sau chỉ còn lại là E t / = 0 , 25 E t = E 16 .
→ Vậy năng lượng dao động của con lăc lúc sau là: E / = E d + E t / = 3 E 4 + E 16 = 13 E 16 .
+ Mặc khác độ cứng của lò xo tỉ lệ nghịch với chiều dài nên con lăc lúc sau sẽ có độ cứng gấp 4 lần con lắc lúc đầu
⇒ E / = 13 E 16 ⇔ 1 2 4 k A / 2 = 13 16 . 1 2 k A 2 ⇒ A / = 13 4.16 A = 2 , 25 c m