K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2019

Hướng dẫn: Chọn đáp án C

1 tháng 6 2016

Vì \(T_0< T_1\) , nên E hướng xuống. 
Lại có: \(T_1=2T_0\Leftrightarrow2\pi\sqrt{\frac{l}{g-a}}=2.2\pi\sqrt{\frac{l}{g}}\Rightarrow4a=3g\Leftrightarrow a=\frac{3}{4}g\)\(=7,5\left(m/s^2\right)\)
\(a=\frac{qE}{m}\Rightarrow E=\frac{ma}{q}=3,75.10^3\left(V/m\right)\)

Đáp án D

1 tháng 5 2018

Chọn C

+ Độ giảm biên độ sau một chu kì: 

=> Số dao động thực hiện đến khi dừng:

+ Thời gian dao động: 

+ Thay biểu thức của Δα và T vào (*) => Fc = 1,7.10-4 N.

23 tháng 8 2016

f_0 = \frac{\sqrt{\frac{g}{l}}}{2 \pi = \frac{1}{2}(Hz)(\pi^2 \approx 10)}
Xét: f_1 - f_0 < f_2 - f_0 ⇒ Biên độ giảm

19 tháng 8 2016

Ta có: \(v=\omega\sqrt{s^2_0-s^2}=\sqrt{gl\left(\alpha^2_0-a^2_1\right)}\)\(=0,271\left(m\right)=27,1\left(cm\text{/}s\right)\)

19 tháng 8 2016

v subscript m a x end subscript equals omega S subscript 0 equals square root of g over l end root l alpha subscript 0 equals 0 comma 313 space m divided by s

open parentheses v over v subscript m a x end subscript close parentheses squared plus open parentheses alpha over alpha subscript 0 close parentheses squared equals 1 rightwards double arrow v equals 0 comma 271 space m divided by s=2 7,1  cm/s

O
ongtho
Giáo viên
19 tháng 11 2015

\(\overrightarrow {g'} =\overrightarrow g - \overrightarrow a \)

Ô tô chuyển động nằm ngang => \(\overrightarrow a \bot \overrightarrow g\)

=> \(g' = \sqrt{g^2+ a^2}\)

\(T = 2\pi \sqrt{\frac{l}{g}}\)

\(T' = 2\pi \sqrt{\frac{l}{g'}}\)

=> \(\frac{T}{T'} = \sqrt{\frac{g'}{g}} = \sqrt{\frac{\sqrt{g^2+a^2}}{g}} = 1,01\)

=> \(T'= \frac{2}{1,01} = 1,98 s.\)

24 tháng 8 2017

cho mình hỏi: Nếu trong trường hợp ôtô chuyển động thẳng chậm dần đều thì phải làm ntn ?

1 tháng 6 2016
Đáp án đúng: A
 

Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)

O
ongtho
Giáo viên
19 tháng 11 2015

Gia tốc biểu kiến của con lắc nằm trong thang máy chuyển động với gia tốc \(\overrightarrow a\) là:

 \(\overrightarrow {g'} = \overrightarrow {g} -\overrightarrow a \)

Thang máy đi lên chậm dần đều nên \(\overrightarrow g \uparrow \uparrow \overrightarrow a\) => \( {g'} ={g} -a \)

Mà \(a = \frac{g}{2} => g' = g - \frac{g}{2} = \frac{g}{2}.\)

Chu kì của con lắc lúc này là \(T' =2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\frac{2l}{g}} = T\sqrt{2}.\)