K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

Chọn D.

Gia tốc chuyển động tại t = 3s là s”(3)

Ta có: s’(t) = 54 và s’’(t) = 0

Vậy vật chuyển động với gia tốc là 0 nên tại t = 3 thì a = 0.

4 tháng 4 2017

Trả lời:

a) Vận tốc của chuyển động khi t = 2 (s).

Ta có:

v=dsdt=S′=3t2−6t−9v=dsdt=S′=3t2−6t−9

Khi t = 2(s) ⇒ 3.22 – 6.22 – 9 = -9 m/s.

b) Gia tốc của chuyển động khi t = 3(s). Ta có:

a=dvdt=v′=6t−6a=dvdt=v′=6t−6

Ở t = 3(s) ⇒ a = 6.3 – 6 = 12 m/s2

c) Ta có: v = 3t2 – 6t – 9

Tại thời điểm vận tốc triệt tiêu:

v=0⇔3t2−6t−9=0⇔t2−2t−3=0⇔[t=−1(l)t=3(s)v=0⇔3t2−6t−9=0⇔t2−2t−3=0⇔[t=−1(l)t=3(s)

Gia tốc: a = 6t – 6.

Khi t = 3s ⇒ a = 6.3 – 6 = 12 m/s2

d) Ta đã có a = 6t – 6.

Khi a = 0 ⇔ 6t – 6= 0 ⇔ t = 1(s)

Lại có: v = 3t2 – 6t – 9

Khi t = 1(s) ⇒ v = 3.12 – 6.1 – 9 = -12 m/s



2 tháng 5 2017

câu b.. v'=6t-6 là s v bạn??

có thể hướng dẫn giúp mình hiểu cách làm các dạng bài sau không ạ? đây là đề cương ôn kthk2 lớp 11: Câu 1: biết:[(2x+1)\(\times\)(x2-2x+3)]'= ax2+bx+c. Tính S=a+b+c? Câu 2: cho chuyển động thẳng xác định bởi phương trình S(t)=\(\frac{-1}{4}\)t4 + 3t3 -2t -a, trong đó t tính bằng giây (s) và S tính bằng mét (m). Tại thời điểm nào, gia tốc của chuyển động đạt giá trị lớn nhất? Câu 3: cho hàm số...
Đọc tiếp

có thể hướng dẫn giúp mình hiểu cách làm các dạng bài sau không ạ? đây là đề cương ôn kthk2 lớp 11:

Câu 1: biết:[(2x+1)\(\times\)(x2-2x+3)]'= ax2+bx+c. Tính S=a+b+c?

Câu 2: cho chuyển động thẳng xác định bởi phương trình S(t)=\(\frac{-1}{4}\)t4 + 3t3 -2t -a, trong đó t tính bằng giây (s) và S tính bằng mét (m). Tại thời điểm nào, gia tốc của chuyển động đạt giá trị lớn nhất?

Câu 3: cho hàm số y=\(\frac{1}{3}\)x3-3x2-9x+5 có đồ thị (C), viết phương trình tiếp tuyến biết tiếp tuyến song song với đường thẳng d:y= 3x+5.

Câu 4: cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh bên SA vuông góc với đáy. Biết góc ABC bằng 60o, cạnh SC tạo với m/p ABCD 1 góc 45o.

a) c/m: BD vuông góc SI

b) tính góc giữa 2 mp (SBD) và (ABCD).

mong sớm được giúp đỡ, cảm ơn ạ!

1
NV
25 tháng 4 2019

Câu 1:

\(\left(2x+1\right)\left(x^2-2x+3\right)=2x^3-4x^2+6x+x^2-2x+3\)

\(=2x^3-3x^2+4x+3\)

\(\Rightarrow\left[\left(2x+1\right)\left(x^2-2x+3\right)\right]'=6x^2-6x+4\) \(\Rightarrow a+b+c=6-6+4=4\)

Câu 2:

\(v\left(t\right)=s'\left(t\right)=-t^3+9t^2-2\)

\(a\left(t\right)=v'\left(t\right)=-3t^2+18t\)

\(a'\left(t\right)=-6t+18=0\Rightarrow t=3\)

\(\Rightarrow\) vật đạt gia tốc lớn nhất sau 3s kể từ khi chuyển động

Câu 3:

\(y'=x^2-6x-9\)

Gọi tiếp tuyến d' tại \(M\left(x_0;y_0\right)\) có pt \(y=\left(x_0^2-6x_0-9\right)\left(x-x_0\right)+y_0\)

Do \(d//d'\Rightarrow x_0^2-6x_0-9=3\Rightarrow x_0^2-6x_0-12=0\)

\(\Rightarrow\left\{{}\begin{matrix}x_0=3+\sqrt{21}\\x_0=3-\sqrt{21}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y_0=...\\y_0=...\end{matrix}\right.\) \(\Rightarrow\) pttt

Có vẻ bạn chép sai đề, tiếp tuyến quá xấu

Câu 4:

S A B C D I

Ta có: \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\)

\(BD\perp AC\) (tính chất hình thoi)

\(\Rightarrow BD\perp\left(SAC\right)\Rightarrow BD\perp SI\)

b/ \(\left(SBD\right)\cap\left(ABCD\right)=BD\); mà \(\left(SAC\right)\perp BD\)

\(\Rightarrow\widehat{SIA}\) là góc giữa (SBD) và (ABCD)

Đặt \(AB=x\); do \(\widehat{ABC}=60^0\Rightarrow\Delta ABC\) đều \(\Rightarrow AC=x\)

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD) \(\Rightarrow\widehat{SCA}=45^0\)

\(\Rightarrow SA=AC.tan\widehat{SCA}=x.1=x\)

\(AI=\frac{1}{2}AC=\frac{x}{2}\Rightarrow tan\widehat{SIA}=\frac{SA}{AI}=\frac{x}{\frac{x}{2}}=2\)

\(\Rightarrow\widehat{SIA}\approx63^026'\)

6 tháng 8 2020

2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)

ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0

\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1

vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)

\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1

\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0

vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)

9 tháng 12 2019

Chọn B.

Ta có s’(t) = 3t2 + 10t ; s”(t) = 6t.

Do đó gia tốc chuyển động có phương trình a(t) = 6t.

Gia tốc của chuyển động tại t = 2 là : a(2) = 6.2 = 12

9 tháng 4 2017

a) Vận tốc trung bình của chuyển động trong khoảng thời gian từ t đến t + ∆t

vtb = = = g .(2t + ∆t) ≈ 4,9. (2t + ∆t).

Với t = 5 và

+) ∆t = 0.1 thì vtb ≈ 4,9. (10 + 0,1) ≈ 49,49 m/s;

+) ∆t = 0,05 thì vtb ≈ 4,9. (10 + 0,05) ≈ 49,245 m/s;

+) ∆t = 0,001 thì vtb ≈ 4,9. (10 + 0,001) ≈ 49,005 m/s.

b) Vận tốc tức thời của chuyển động tại thời điểm t = 5s tương ứng với ∆t = 0 nên v ≈ 4,9 . 10 = 49 m/s.

Câu 1 : Kết quả của giới hạn lim \(\frac{-3n^2+5n+1}{2n^2-n+3}\) là : A. \(\frac{3}{2}\) B. \(+\infty\) C. \(-\frac{3}{2}\) D. 0 Câu 2 : Gía trị của giới hạn lim \(\frac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\) là : A. 1 B. 0 C. 3 D. \(+\infty\) Câu 3 : Biết rằng lim...
Đọc tiếp

Câu 1 : Kết quả của giới hạn lim \(\frac{-3n^2+5n+1}{2n^2-n+3}\) là :

A. \(\frac{3}{2}\) B. \(+\infty\) C. \(-\frac{3}{2}\) D. 0

Câu 2 : Gía trị của giới hạn lim \(\frac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\) là :

A. 1 B. 0 C. 3 D. \(+\infty\)

Câu 3 : Biết rằng lim \(\left(\frac{\left(\sqrt{5}\right)^n-2^{n+1}+1}{5.2^n+\left(\sqrt{5}\right)^{n+1}-3}+\frac{2n^2+3}{n^2-1}\right)=\frac{a\sqrt{5}}{b}+c\) với a , b , c \(\in\) Z . Tính giá trị của biểu thức S = a2 + b2 + c2

A. S = 26 B. S = 30 C. S = 21 D. S = 31

Câu 4 : Cho un = \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\right)\) thì lim \(\left(u_n-\frac{1}{2}\right)\) bằng

A. 0 B. -1 C. 1 D. \(\frac{1}{2}\)

Câu 5 : Tìm giá trị thực của tham số m để hàm số y = f (x ) = \(\left\{{}\begin{matrix}\frac{x^2-x-2}{x-2}khix\ne2\\mkhix=2\end{matrix}\right.\) liên tục tại x = 2

A. m = 3 B. m = 1 C. m = 2 D. m = 0

Câu 6 : Cho hàm số f(x) = \(\left\{{}\begin{matrix}\frac{x^2+4x+3}{x+3},khix>-3\\2a,khix\le-3\end{matrix}\right.\) . giá trị của để f ( x ) liên tục tại x0 = -3 là

A. 1 .B. 2 C. -1 D. -2

Câu 7 : Hàm số y = f (x) = \(\frac{x^3+xcosx+sinx}{2sinx+3}\) liên tục trên

A. [-1;1] B. [1;5] C. \(\left(-\frac{3}{2};+\infty\right)\) D. R

Câu 8 : Kết quả của giới hạn \(lim_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt[3]{x^3-x^2}\right)\) là :

A. \(+\infty\) B. \(-\infty\) C. 0 D. \(\frac{5}{6}\)

Câu 9 : Với a là số thực khác 0 , \(lim_{x\rightarrow a}\frac{x^2-\left(a+1\right)x+a}{x^2-a^2}\) bằng :

A. a - 1 B. a + 1 C. \(\frac{a-1}{2a}\) D. \(\frac{a+1}{2a}\)

Câu 10 : giá trị của \(lim_{x\rightarrow+\infty}\frac{\sqrt{2+2x}-\sqrt{2x^2+2}}{2x}\) bằng

A. \(-\infty\) B. \(\sqrt{2}-\sqrt{3}\) C. \(+\infty\) D. \(-\sqrt{3}\)

Câu 11 : Kết quả của giới hạn \(lim_{x\rightarrow1^+}\frac{-2x+1}{x-1}\)là :

A. \(\frac{2}{3}\) B. \(-\infty\) C. \(\frac{1}{3}\) D. \(+\infty\)

Câu 12 : Đạo hàm của hàm số y = cot x là hàm số :

A. \(\frac{1}{sin^2x}\) B. \(-\frac{1}{sin^2x}\) C. \(\frac{1}{cos^2x}\) D. \(-\frac{1}{cos^2x}\)

Câu 13 : Đạo hàm của hàm số y = \(\left(x^3-2x^2\right)^{2020}\) là :

A. y' = \(2020\left(x^3-2x^2\right)^{2021}\)

B. y' = \(2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)

C. y' = \(2019\left(x^3-2x^2\right)^{2020}\left(3x^2-4x\right)\)

D. y' = \(2019\left(x^3-2x^2\right)\left(3x^2-2x\right)\)

Câu 14 : Đạo hàm của hàm số y = \(\sqrt{4x^2+3x+1}\) là hàm số nào sau đây ?

A. y = \(\frac{1}{2\sqrt{4x^2+3x+1}}\)

B. y = \(\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)

C. y = 12x + 3

D. y = \(\frac{8x+3}{\sqrt{4x^2+3x+1}}\)

Câu 15 : Tính đạo hàm của hàm số y = (x - 5)4

A. y' = ( x - 5 )3 B. y' = -20 (x-5)3 C. y' = -5(x-5)3 D. y' = 4(x-5)3

Câu 16 : Tính đạo hàm của hàm số y = \(\sqrt{cos2x}\)

A. \(y^'=-\frac{sin2x}{2\sqrt{cos2x}}\)

B. y' = \(\frac{sin2x}{\sqrt{cos2x}}\)

C. y' = \(\frac{sin2x}{2\sqrt{cos2x}}\)

D. y' = \(-\frac{sin2x}{\sqrt{cos2x}}\)

Câu 17 : Đạo hàm của hàm số y = \(x^4+\frac{1}{x}-\sqrt{x}\) là :

A. y' = \(4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

B. y' = \(4x^3+\frac{1}{x^2}+\frac{1}{2\sqrt{x}}\)

C. y' = \(4x^3+\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

D. y' = \(4x^3-\frac{1}{x^2}+\frac{1}{2\sqrt{x}}\)

Câu 18 : Tiếp tuyến với đồ thị y = x3 - x2 tại điểm có hoành độ x0 = -2 có phương trình là :

A. y = 20x + 14 B. y = 20x + 24 C. y = 16x + 20 D. y = 16x - 56

Câu 19 : Tính đạo hàm cấp hai của hàm số y = \(\frac{1}{x}\)

A. y'' = \(-\frac{2}{x^3}\)

B. y'' = \(-\frac{1}{x^2}\)

C. y'' = \(\frac{1}{x^2}\)

D. y'' = \(\frac{2}{x^3}\)

Câu 20 : Hàm số y = cot x có đạo hàm là :

A. \(y^'=-\frac{1}{sin^2x}\)

B. y' = - tan x

C. y' = \(-\frac{1}{cos^2x}\)

D. y' = 1 + cot2x

Câu 21 : Hàm số y = \(x-\frac{4}{x}\) có đạo hàm bằng

A. \(\frac{-x^2+4}{x^2}\)

B. \(\frac{x^2+4}{x^2}\)

C. \(\frac{-x^2-4}{x^2}\)

D. \(\frac{x^2-4}{x^2}\)

Câu 22 : Trong các dãy số (un) sau , dãy số nào có giới hạn bằng \(+\infty\) ?

A. \(u_n=\frac{1}{n}\)

B. \(u_n=\left(\frac{2}{3}\right)^n\)

C. \(u_n=\left(-\frac{1}{2}\right)^n\)

D. \(u_n=3^n\)

5
NV
10 tháng 6 2020

16.

\(y'=\frac{\left(cos2x\right)'}{2\sqrt{cos2x}}=\frac{-2sin2x}{2\sqrt{cos2x}}=-\frac{sin2x}{\sqrt{cos2x}}\)

17.

\(y'=4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

18.

\(y'=3x^2-2x\)

\(y'\left(-2\right)=16;y\left(-2\right)=-12\)

Pttt: \(y=16\left(x+2\right)-12\Leftrightarrow y=16x+20\)

19.

\(y'=-\frac{1}{x^2}=-x^{-2}\)

\(y''=2x^{-3}=\frac{2}{x^3}\)

20.

\(\left(cotx\right)'=-\frac{1}{sin^2x}\)

21.

\(y'=1+\frac{4}{x^2}=\frac{x^2+4}{x^2}\)

22.

\(lim\left(3^n\right)=+\infty\)

NV
10 tháng 6 2020

11.

\(\lim\limits_{x\rightarrow1^+}\frac{-2x+1}{x-1}=\frac{-1}{0}=-\infty\)

12.

\(y=cotx\Rightarrow y'=-\frac{1}{sin^2x}\)

13.

\(y'=2020\left(x^3-2x^2\right)^{2019}.\left(x^3-2x^2\right)'=2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)

14.

\(y'=\frac{\left(4x^2+3x+1\right)'}{2\sqrt{4x^2+3x+1}}=\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)

15.

\(y'=4\left(x-5\right)^3\)