Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)
\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)
\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)
Bài 1:
a: ĐKXĐ: x>0; x<>1
b: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)
c: Thay \(x=6+2\sqrt{5}\) vào A, ta được:
\(A=\dfrac{2}{\sqrt{5}+1-1}=\dfrac{2\sqrt{5}}{5}\)
d: Để |A|>A thì A>0
=>\(\sqrt{x}-1>0\)
hay x>1
Đề 1: TỰ LUẬN
Câu 1: sin 60o31' = cos 29o29'
cos 75o12' = sin 14o48'
cot 80o = tan 10o
tan 57o30' = cot 32o30'
sin 69o21' = cos 20o39'
cot 72o25' = 17o35'
- Chiều về mình làm cho nha nha Giờ mình đi học rồi Bạn có gấp lắm hông
a, không nhìn rõ
b, \(\dfrac{a+2\sqrt{a}+1}{a-1}\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)
Kẻ BK là đường cao của hình thang => BK = 12 cm
Từ B, kẻ BE//AC => ABEC là hình bình hành và BD vuông góc với BE
Áp dụng hệ thức lượng trong tam giác BDE vuông ở B :1/BD2 + 1/BE2 = 1/BK2
=> BE = 20 cm
Theo định lý Py-ta-go, BD2 +BE2 =DE2 => DE = 25 cm
Lại có DE = DC+CE=DC+AB
=> SABCD =\(\frac{\left(DC+AB\right).BK}{2}=\frac{25.12}{2}=150\) (cm2)
Câu 33 : \(\sqrt[3]{x^3+3x^2+3x+1}-\sqrt[3]{8x^3+12x^2+6x+1}\)
\(=\sqrt[3]{\left(x+1\right)^3}-\sqrt[3]{\left(2x+1\right)^3}=x+1-2x-1=-x\)
-> chọn B
Câu 34 : \(\sqrt[3]{x^3-3x^2+3x-1}-\sqrt[3]{125x^3+75x^2+15x+1}\)
\(=\sqrt[3]{\left(x-1\right)^3}-\sqrt[3]{\left(5x+1\right)^3}=x-1-5x-1=-4x-2\)
ta có : \(\hept{\begin{cases}x^3+3x^2+3x+1=\left(x+1\right)^3\\8x^3+12x^2+6x+1=\left(2x+1\right)^3\end{cases}}\)
nên : \(\sqrt[3]{x^3+3x^2+3x+1}-\sqrt[3]{8x^3+12x^2+6x+1}=x+1-\left(2x+1\right)=-x\)
Vậy đáp án là B