Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(M=\dfrac{\left(\dfrac{3}{10}-\dfrac{4}{15}-\dfrac{7}{20}\right)\cdot\dfrac{5}{19}}{\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{-3}{35}\right)\cdot\dfrac{-4}{45}}\)
\(=\dfrac{\dfrac{3\cdot6-4\cdot4-7\cdot3}{60}\cdot\dfrac{5}{19}}{\dfrac{7+5+3}{35}\cdot\dfrac{-4}{45}}=\dfrac{\dfrac{-19}{60}\cdot\dfrac{5}{19}}{\dfrac{15}{35}\cdot\dfrac{-4}{45}}=\dfrac{-1}{12}:\dfrac{-4}{105}=\dfrac{105}{60}=\dfrac{7}{4}\)
\(A=\dfrac{\left(1+17\right).\left(1+\dfrac{17}{2}\right)..........\left(1+\dfrac{17}{19}\right)}{\left(1+19\right).\left(1+\dfrac{19}{2}\right)..........\left(1+\dfrac{19}{17}\right)}\)
\(=\dfrac{18.\dfrac{19}{2}.............\dfrac{36}{19}}{20.\dfrac{21}{2}..........\dfrac{36}{17}}\)
\(=\dfrac{18.19.20.......36}{1.2.3...19}:\dfrac{20.21.....36}{1.2.3...17}\)
\(=\dfrac{1.2.3......36}{1.2.....36}\)
\(=1\)
a: \(\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
nên \(\left\{{}\begin{matrix}2x-1=0\\y-\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=x+y=\dfrac{9}{10}\end{matrix}\right.\)
b: Bạn xem lại đề, nghiệm rất xấu
Bài 1:
a: \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Leftrightarrow\left(2x-15\right)^3\cdot\left[\left(2x-15\right)^2-1\right]=0\)
\(\Leftrightarrow\left(2x-15\right)^3\cdot\left(2x-16\right)\left(2x-14\right)=0\)
hay \(x\in\left\{8;7;\dfrac{15}{2}\right\}\)
b: \(\left(x-1\right)^3=\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x-1\right)^2-1\right]=0\)
=>x(x-1)(x-2)=0
hay \(x\in\left\{0;1;2\right\}\)
c: \(\left(x-1\right)^{x+2}=\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left[\left(x-1\right)^x-1\right]=0\)
hay x=1
\(\dfrac{3}{\left(x+2\right)\left(x+5\right)}+\dfrac{5}{\left(x+5\right)\left(x+10\right)}+\dfrac{7}{\left(x+10\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\dfrac{15}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow x=15\)
Vậy x = 15
a: TH1: x>=0
=>x+x=1/3
=>x=1/6(nhận)
TH2: x<0
Pt sẽ là -x+x=1/3
=>0=1/3(loại)
b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow x=2\)
c: \(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{2}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{x-20-2x+2}{\left(x-1\right)\left(x-20\right)}=\dfrac{-3}{4}\)
\(\Leftrightarrow-3\left(x^2-21x+20\right)=4\left(-x-18\right)\)
\(\Leftrightarrow3x^2-63x+60=4x+72\)
=>3x^2-67x-12=0
hay \(x\in\left\{22.51;-0.18\right\}\)
\(E=\dfrac{98:\left(\dfrac{4}{5}\cdot\dfrac{5}{4}\right)}{\dfrac{16}{25}-\dfrac{1}{25}}+\dfrac{\left(\dfrac{27}{25}-\dfrac{2}{25}\right)\cdot\dfrac{7}{4}}{\left(\dfrac{59}{9}-\dfrac{13}{4}\right)\cdot\dfrac{36}{17}}\\ E=\dfrac{98}{\dfrac{3}{5}}+\dfrac{\dfrac{7}{4}}{\dfrac{119}{36}\cdot\dfrac{36}{17}}\\ E=\dfrac{490}{3}+\dfrac{\dfrac{7}{4}}{7}=\dfrac{490}{3}+\dfrac{1}{4}=\dfrac{1963}{12}\)
bạn ơi chỗ kia mik nhìn hơi loạn tí bạn giải thích giúp mik với
TH1: |20x-1/2|^17=1 và |20x+1/2|^17=0
=>(20x-1/2=1 hoặc 20x-1/2=-1) và (20x+1/2=0)
=>x=-1/40
TH2: |20x-1/2|^17=0 và |20x+1/2|^17=1
=>20x-1/2=0 hoặc (20x+1/2=1 hoặc 20x+1/2=-1)
=>x=1/40