K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

k rồi L Vậy nó là 2 cái gì đây

NV
14 tháng 5 2021

(E) có \(c^2=16-12=4\Rightarrow c=2\)

Hai tiêu điểm: \(F_1\left(-2;0\right)\) ; \(F\left(2;0\right)\)

\(\dfrac{1}{16}+\dfrac{y_M^2}{12}=1\Rightarrow y_M=\pm\dfrac{3\sqrt{5}}{2}\) (chỉ cần lấy 1 trong 2 giá trị do tính đối xứng qua trục hoành của elip)

\(\Rightarrow M\left(1;\dfrac{3\sqrt{5}}{2}\right)\Rightarrow\overrightarrow{MF_1}=\left(3;-\dfrac{3\sqrt{5}}{2}\right)\)

\(\Rightarrow MF_1=\sqrt{9+\dfrac{45}{4}}=\dfrac{9}{2}\) ; \(MF_2=2a-MF_1=8-\dfrac{9}{2}=\dfrac{7}{2}\)

6 tháng 5 2021

2.

\(x^2+2x+m+1\le0\)

\(\Leftrightarrow m\le f\left(x\right)=-\left(x+1\right)^2\)

Yêu cầu bài toán thỏa mãn khi:

\(\Leftrightarrow m\le maxf\left(x\right)=max\left\{f\left(-1\right);f\left(3\right)\right\}=0\)

Vậy \(m\le0\)

6 tháng 5 2021

3.

\(f\left(x\right)=x^2-2mx-3m\le0\)

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'\ge0\\f\left(-1\right)\le0\\f\left(3\right)\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+3m\ge0\\1-m\le0\\-9m-9\le0\end{matrix}\right.\Leftrightarrow m\ge1\)

Vậy \(m\ge1\)

6 tháng 9 2021

Đặt y = f(x) = - 2x2 có đồ thị (C)

và y = g(x) = - 2x2 - 6x + 3 có đồ thị (C')

Ta có :

g(x) = - 2x2 - 6x + 3 

= - 2\(\left(x^2+3x-\dfrac{3}{2}\right)\)

= - 2\(\left(x+\dfrac{3}{2}\right)^2\) + \(\dfrac{15}{2}\)

\(f\left(x+\dfrac{3}{2}\right)+\dfrac{15}{2}\)

Vậy tịnh tiến (C) sang trái \(\dfrac{3}{2}\) đơn vị rồi kéo (C) lên trên \(\dfrac{15}{4}\) đơn vị ta được (C')

 

22 tháng 9 2021

1.A. Ta thấy để hàm số xác định thì x-m\(\ne\)0 hay x\(\ne\)m mà vì x\(\in\)(0,1) nên để x\(\ne\)m thì m\(\notin\)(0,1)=>m>=1 hoặc m<=0

2A để A giao B khác 0 thì 2m-1<=m+3 hay m<=4

3C.A giao B =A khi \(\left\{{}\begin{matrix}m< =-1\\m+5>=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< =1\\m>=-2\end{matrix}\right.\)

NV
14 tháng 5 2021

Từ pt (E) ta xác định được: \(a=5;b=3;c=4\)

\(F_1F_2=2c=8\Rightarrow\) chu vi tam giác \(MF_1F_2=MF_1+MF_2+F_1F_2=2a+2c=18\)

\(\Rightarrow\) nửa chu vi \(p=9\)

Tam giác \(MF_1F_2\) vuông tại M \(\Rightarrow OM=\dfrac{1}{2}F_1F_2=4\)

Gọi \(M\left(x;y\right)\Rightarrow\overrightarrow{OM}=\left(x;y\right)\Rightarrow OM^2=x^2+y^2=16\)

\(\Rightarrow x^2=16-y^2\)

Thay vào pt (E):

\(\dfrac{16-y^2}{25}+\dfrac{y^2}{9}=1\Rightarrow y^2=\dfrac{81}{16}\Rightarrow\left|y\right|=\dfrac{9}{4}\)

\(S_{MF_1F_2}=\dfrac{1}{2}F_1F_2.d\left(M;F_1F_2\right)=\dfrac{1}{2}.2c.\left|y\right|=9\)

\(\Rightarrow r=\dfrac{S_{MF_1F_2}}{p}=1\)

20 tháng 5 2021

13.

\(\dfrac{sinx-sin3x+sin5x}{cosx-cos3x+cos5x}\)

\(=\dfrac{2sin3x.cos2x-sin3x}{2cos3x.cos2x-cos3x}\)

\(=\dfrac{\left(2cos2x-1\right)sin3x}{\left(2cos2x-1\right)cos3x}\)

\(=\dfrac{sin3x}{cos3x}=tan3x\)