Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2n-1\right)^3-2n+1\)
\(A=8n^3-6n+6n-1-2n+1\)
\(A=8n^3-2n=2n\left(4n^2-1\right)\)
\(A=2n\left(2n+1\right)\left(2n-1\right)\)
\(A=\left(2n-1\right)2n\left(2n+1\right)⋮6\) ( 3 số tự nhiên liên tiếp)
Bài 1:
Vận tốc cano khi dòng nước lặng là: $25-2=23$ (km/h)
Bài 2:
Đổi 1 giờ 48 phút = 1,8 giờ
Độ dài quãng đường AB: $1,8\times 25=45$ (km)
Vận tốc ngược dòng là: $25-2,5-2,5=20$ (km/h)
Cano ngược dòng từ B về A hết:
$45:20=2,25$ giờ = 2 giờ 15 phút.
Xét tứ giác ANHM có \(\widehat{ANH}+\widehat{AMH}=180^0\)
nên AHNM là tứ giác nội tiếp
Gọi O là tâm đường tròn ngoại tiếp tứ giác AHNM
Xét (O) có
\(\widehat{ANM}\) là góc nội tiếp chắn cung AM
\(\widehat{AHM}\) là góc nội tiếp chắn cung AM
Do đó: \(\widehat{ANM}=\widehat{AHM}\)
mà \(\widehat{AHM}=\widehat{B}\)
nên \(\widehat{ANM}=\widehat{B}\)
Gọi K là giao điểm của AD và NM
Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên DA=DC
=>ΔDAC cân tại D
=>\(\widehat{C}=\widehat{DAC}\)
\(\widehat{KAN}+\widehat{KNA}=\widehat{B}+\widehat{C}=90^0\)
nên \(\widehat{AKN}=90^0\)
=>AD\(\perp\)NM
Bài 1:
a.
$a^3-a^2c+a^2b-abc=a^2(a-c)+ab(a-c)$
$=(a-c)(a^2+ab)=(a-c)a(a+b)=a(a-c)(a+b)$
b.
$(x^2+1)^2-4x^2=(x^2+1)^2-(2x)^2=(x^2+1-2x)(x^2+1+2x)$
$=(x-1)^2(x+1)^2$
c.
$x^2-10x-9y^2+25=(x^2-10x+25)-9y^2$
$=(x-5)^2-(3y)^2=(x-5-3y)(x-5+3y)$
d.
$4x^2-36x+56=4(x^2-9x+14)=4(x^2-2x-7x+14)$
$=4[x(x-2)-7(x-2)]=4(x-2)(x-7)$
Bài 2:
a. $(3x+4)^2-(3x-1)(3x+1)=49$
$\Leftrightarrow (3x+4)^2-[(3x)^2-1]=49$
$\Leftrightarrow (3x+4)^2-(3x)^2=48$
$\Leftrightarrow (3x+4-3x)(3x+4+3x)=48$
$\Leftrightarrow 4(6x+4)=48$
$\Leftrightarrow 6x+4=12$
$\Leftrightarrow 6x=8$
$\Leftrightarrow x=\frac{4}{3}$
b. $x^2-4x+4=9(x-2)$
$\Leftrightarrow (x-2)^2=9(x-2)$
$\Leftrightarrow (x-2)(x-2-9)=0$
$\Leftrightarrow (x-2)(x-11)=0$
$\Leftrightarrow x-2=0$ hoặc $x-11=0$
$\Leftrightarrow x=2$ hoặc $x=11$
c.
$x^2-25=3x-15$
$\Leftrightarrow (x-5)(x+5)=3(x-5)$
$\Leftrightarrow (x-5)(x+5-3)=0$
$\Leftrightarrow (x-5)(x+2)=0$
$\Leftrightarrow x-5=0$ hoặc $x+2=0$
$\Leftrightarrow x=5$ hoặc $x=-2$
\(3x^2+7x-20=0\\ < =>3x^2+12x-5x-20=0\\ < =>3x\left(x+4\right)-5\left(x+4\right)=0\\ < =>\left(x+4\right)\left(3x-5\right)=0\\ =>\left\{{}\begin{matrix}x+4=0\\3x-5=0\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=-4\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy: Tập nghiệm của phương trình là \(S=\left\{-4;\dfrac{5}{3}\right\}\)
do câu hỏi của lớp 8 nên mình làm ntn nha:
pt <=> \(3x^2+7x=20\)
<=> \(x^2+\dfrac{7}{3}x=\dfrac{20}{3}\)
<=> \(x^2+2.\dfrac{\dfrac{7}{3}}{2}x+\dfrac{49}{36}-\dfrac{49}{36}=\dfrac{20}{3}\) <=> \(\left(x+\dfrac{7}{6}\right)^2=\dfrac{49}{36}+\dfrac{20}{3}\)
<=> \(\left(x+\dfrac{7}{6}\right)^2=\dfrac{289}{36}\)
<=> x+7/6 = \(\pm\sqrt{\dfrac{289}{36}}\)
<=> \(\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-4\end{matrix}\right.\)
a/ \(\left(x-3\right)^2+6\left(x-3\right)+9\)
\(=\left(x-3\right)^2+2.\left(x-3\right).3+3^2\)
\(=\left(x-3+3\right)^2=x^2\)
==========
b/ \(\left(x+2021\right)^2+2\left(x+2021\right)\left(x-2021\right)+\left(x-2021\right)^2\)
\(=\left(x+2021+x-2021\right)^2=4x^2\)
===========
c/ \(2022^2-2.2021.2022+2021^2\)
\(=\left(2022-2021\right)^2=1\)
==========
d/ \(\left(x+44\right)^2-88\left(x+44\right)+1936\)
\(=\left(x+44\right)^2-2.\left(x+44\right).44+44^2\)
\(=\left(x+44-44\right)^2=x^2\)
d: Ta có: \(\left(x+44\right)^2-88\left(x+44\right)+1936\)
\(=\left(x+44-44\right)^2\)
\(=x^2\)