Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\left(m+1\right)^2+\left(m-1\right)^2\ge\left(2m+3\right)^2\)
\(\Leftrightarrow2m^2+12m+7\le0\)
\(\Leftrightarrow\frac{-6-\sqrt{22}}{2}\le m\le\frac{-6+\sqrt{22}}{2}\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m-1\right)^2+4m\ge m^4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^4-\left(m+1\right)^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m^2+m+1\right)\left(m^2-m-1\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow0\le m\le\frac{1+\sqrt{5}}{2}\)
c/ \(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}=m\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)+\frac{1}{2}=m\)
Do \(-\frac{1}{2}\le sin\left(2x-\frac{\pi}{3}\right)\le\frac{3}{2}\Rightarrow-\frac{1}{2}\le m\le\frac{3}{2}\)
Miền xác định của hàm là miền đối xứng
\(f\left(-x\right)=\frac{m.cos\left(-x\right)}{tan\left(-3x\right)}+\left(m+1\right)\left|sin\left(-2x\right)\right|\)
\(=-\frac{mcosx}{tan3x}+\left(m+1\right)\left|sin2x\right|\)
Hàm lẻ khi và chỉ khi \(f\left(-x\right)=-f\left(x\right)\) với mọi x thuộc TXĐ
\(\Leftrightarrow-\frac{mcosx}{tan3x}+\left(m+1\right)\left|sin2x\right|=-\frac{mcosx}{tan3x}-\left(m+1\right)\left|sin2x\right|\) ; \(\forall x\in D\)
\(\Leftrightarrow\left(m+1\right)\left|sin2x\right|=-\left(m+1\right)\left|sin2x\right|\) ; \(\forall x\in D\)
\(\Leftrightarrow m+1=0\Leftrightarrow m=-1\)
`(m^2+m)cos2x=m^2-m-3-m^2 cos2x`
`<=> (2m^2+m)cos2x=m^2-m-3`
`<=>cos2x =(m^2-m-3)/(2m^2+m)`
PT có nghiệm `<=> -1 <= (m^2-m-3)/(2m^2+m) <=1`
`<=> [(m<=-1 \vee m>=1),(-1/2 < m <0):}`
???????????????????????????????????
???????? hỏi thế ai mà trả lời đc