K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 7 2021

a.

Chọn 4 bạn bất kì từ 3 lớp: \(C_{12}^4\)

Chọn 4 bạn ko có lớp A: \(C_9^4\)

Chọn 4 bạn ko có lớp B: \(C_8^4\)

Chọn 4 bạn ko có lớp C: \(C_7^4\)

Số cách thỏa mãn: \(C_{12}^4-\left(C_7^4+C_8^4+C_9^4\right)=...\)

b.

Chọn 4 bạn có đúng 1 bạn lớp A: \(C_3^1.C_9^3\)

Số các thỏa mãn:

\(C_{12}^4-\left(3.C_9^3+C_9^4\right)\)

NV
22 tháng 7 2021

Chọn ngẫu nhiên 3 bạn: \(C_{15}^3=455\) cách

Chọn 3 bạn không có mặt lớp A: \(C_{11}^3=165\) cách

Chọn 3 bạn ko có mặt lớp B: \(C_{10}^3=120\)

Chọn 3 bạn ko có mặt lớp C: \(C_9^3=84\)

a.

Chọn 3 bạn có mặt đủ 3 lớp: \(455-\left(165+120+84\right)=86\) cách

b.

Chọn 3 bạn có ít nhất 1 bạn lớp A: \(455-165=290\) cách

c.

Không hiểu ý câu hỏi?

16 tháng 8 2018

Đáp án D

Có các TH sau:

+) 1 cán sự, 3 học sinh thường, suy ra có C 3 1 . C 27 3 = 8775 cách

+) 2 cán sự, 2 học sinh thường, suy ra có C 3 2 . C 27 2 = 1053 cách

+) 3 cán sự,1 học sinh thường, suy ra có C 3 3 . C 27 1 = 27 cách

Suy ra có tất cả 9885 cách.

24 tháng 1 2016

[Số cách chọn 4 em sao cho thuộc không quá 2 trong 3 lớp] = [Số cách chọn 4 em trong 12 em] - [số cách chọn mà mỗi lớp có ít nhất 1 em]

 Mà:

 [Số cách chọn 4 em trong 12 em] = \(C^4_{12}=\frac{12!}{4!\left(12-4\right)!}=495\)

 [số cách chọn mà mỗi lớp có ít nhất 1 em] = [Số cách chọn lớp A có 2 hs, lớp B, C mỗi lớp có 1 hs] + [Số cách chọn lớp B có 2 hs, lớp A, C mỗi lớp có 1 hs] + [Số cách chọn lớp C có 2 hs, lớp A, B mỗi lớp có 1 hs]

\(C^2_5.C^1_4.C^1_3+C^1_5.C^2_4.C^1_3+C^1_5.C^1_4.C^2_3\)

= 120            +    90          + 60

= 270

Vậy [Số cách chọn 4 em sao cho thuộc không quá 2 trong 3 lớp] = 495 - 270 =....

22 tháng 7 2018

Đáp án D.

21 tháng 3 2018

2 tháng 7 2017

Đáp án B

Phương pháp.

Chia ra các khả năng có thể có của học sinh các lớp. Tính số cách chọn có thể có của mỗi trường hợp này. Lấy tổng kết quả các khả năng ở trên lại.

Lời giải chi tiết.

Ta xét các trường hợp sau. 

Có 1 học sinh lớp 12C có 2 học sinh lớp 12B và 2 học sinh lớp 12A khi đó ta có 2 C 3 2 C 4 2   =   36  

 cách chọn.

Có 1 học sinh lớp 12C có 3 học sinh lớp 12B và 1 học sinh lớp 12A khi đó ta có  2 C 3 3 C 4 1   =   8 cách chọn.

Có 1 học sinh lớp 12C có 1  học sinh lớp 12B và 3 học sinh lớp 12A khi đó ta có  2 C 3 1 C 4 3   =   24  cách chọn.

Có 2 học sinh lớp 12C có 1 học sinh lớp 12B và 2 học sinh lớp 12A khi đó ta có  C 3 1 C 4 2   =   18 cách chọn.

Có 2 học sinh lớp 12C có 2 học sinh lớp 12B và 1 học sinh lớp 12A khi đó ta có C 3 2 C 4 1   =   12  cách chọn.

Vậy tổng số cách chọn là 36 + 8 + 24 + 18 + 12 = 98

10 tháng 7 2019

Đáp án A

Chọn 5 học sinh từ đội văn nghệ của nhà trường, ta xét các trường hợp

TH1.1 học sinh lớp 12A, 2 học sinh lớp 12B và 2 học sinh lớp 12C

⇒ có C 4 1 . C 3 2 . C 2 2 = 12  cách

TH2.2 học sinh lớp 12A, 1 học sinh lớp 12B và 2 học sinh lớp 12C

có  C 4 3 . C 3 1 . C 2 2 = 18 cách

TH3.3 học sinh lớp 12A, 1 học sinh lớp 12B và 1 học sinh lớp 12C

có  C 4 3 . C 3 1 . C 2 1 = 24 cách

TH4. 1 học sinh lớp 12A, 3 học sinh lớp 12B và 1 học sinh lớp 12C

⇒ có  C 4 1 . C 3 3 . C 2 1 = 8 cách

TH5. 2 học sinh lớp 12A, 2 học sinh lớp 12B và 1 học sinh lớp 12C

có  C 4 2 . C 3 2 . C 2 1 = 36 cách

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Lời giải:

TH1: Chọn 2 bạn lớp A, 1 bạn B, 1 bạn C, có:

$C^2_4.C^1_5.C^1_6=180$ cách chọn

TH2: Chọn 1 bạn A, 2 bạn B, 1 bạn C, có:

$C^1_4.C^2_5.C^1_6=240$ cách chọn

TH3: Chọn 1 bạn A, 1 bạn B, 1 bạn C, có:

$C^1_4.C^1_5.C^2_6=300$ cách chọn

Tổng số cách chọn: $720$ cách chọn.

21 tháng 10 2018

TH 1: 4 học sinh được chọn thuộc một lớp:

 A: có  cách chọn C 5 4 = 5

 B: có  cách chọn   C 4 4 = 1

Trường hợp này có:  6 cách chọn.

TH 2: 4 học sinh được chọn thuộc hai lớp:

 A và B: có  C 9 4 - ( C 5 4 + C 4 4 ) = 120

 B và C: có C 9 4 - C 4 4 = 125

 C và A: có  C 9 4 - C 5 4 = 121

Trường hợp này có 366 cách chọn.

Vậy có 366+6=372 cách chọn thỏa yêu cầu bài toán.

Chọn C.