Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :B = 1 + 3 + 32 + 33 + 34 + 35 + ... + 397 + 398 + 399
= (1 + 3 + 32) + (33 + 34 + 35) + ... + (397 + 398 + 399)
= (1 + 3 + 32) + 33 . (1 + 3 + 32) +...+ 397.(1 + 3 + 32)
= 13 + 33 . 13 + ... + 397.13
= 13.(1 + 33+ ... + 397) \(⋮\)13
Vậy B\(⋮\)13 (đpcm)
Ta có : B = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37+ ... + 396 + 397 + 398 + 399
= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ... + (396 + 397 + 398 + 399)
= (1 + 3 + 32 + 33) + 34.(1 + 3 + 32 + 33) + ... + 396.(1 + 3 + 32 + 33)
= 40 + 34 .40 + ... + 396. 40
= 40.(1 + 34 + .. + 396) \(⋮\)40
Vậy B \(⋮\) 40 (đpcm)
a) B=1+3+32+33+...+399
B=(1+3+32)+(33+34+35)+...+(397+398+399)
B=(1+3+32)+33(1+3+32)+...397(1+3+32)
B=13+33.13+...+397.13
B=(1+33+...+97).13
=> b chia hết cho 13
b)B=(1+3+32+33)+...+(396+397+398+399)
B=(1+3+32+33)+34(1+3+32+33)+...+396(1+3+32+33)
B=40+34.40+...+396.40
B=(1+34+...+396).40
=> B hết cho 40
Ok rồi nha:v
a)
\(S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2015}+3^{2016}\right)\)
\(S=3\cdot12+3^2\cdot12+...+3^{2014}\cdot12=12\cdot\left(3+3^2+...+3^{2014}\right)⋮4\)
\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)
\(S=3\cdot13+3^4\cdot13+...+3^{2014}\cdot13=13\cdot\left(3+3^4+...+3^{2014}\right)⋮13\)
b)
Tính S:
\(3S-S=\left(3^2+3^3+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2016}\right)\)
\(2S=3^{2017}-3\) suy ra \(2S+3=3^{2017}\) là 1 lũy thừa của 3.
c)
Ta có \(S=\frac{3^{2017}-3}{2}\)
\(3^{2017}=\left(3^4\right)^{504}\cdot3=81^{504}\cdot3\)có tận cùng là 3.(Tự hiểu nha em)
Do đó \(3^{2017}-3\)tận cùng là 0 nên S có tận cùng là 0
\(S=3+3^2+3^3+3^4+...+3^{2016}\)
\(3S=3^2+3^3+3^4+3^5+....+3^{2017}\)
\(3S-S=\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)
\(2S=3^{2017}-3\)
\(S=\frac{3^{2017}-3}{2}\)
Vậy 2S + 3 = \(\left(\frac{3^{2017}-3}{2}\right).2+3\)\(=3^{2017}-3+3=3^{2017}\)
Vậy 2S + 3 là một lũy thừa của 3 (đpcm)
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
b;
bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.
.......................................................................3......n=3k và 3k + 1 và 3k+2
c;
bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9
d;tương tự b
e;g;tương tự a