Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}...\frac{1-100^2}{100^2}\)
trong biểu thức trên có 99 số âm nên tích sẽ âm nên ta có thể viết lại như sau:
A=-\(\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\),
Chú ý: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
do vậy: A=-\(\frac{1.3}{2^2}.\frac{2.4}{3^2}...\frac{99.101}{100^2}=\frac{1.2.3...100.101}{2^2.3^2...100^2}=\frac{-101}{100!}>\frac{-101}{2.101}=\frac{-1}{2}\)
Vậy A>\(-\frac{1}{2}\)
Bài 3:
a, Đặt \(A=\left|2x-\frac{1}{5}\right|+2017\)
Để A đạt GTNN thì \(\left|2x-\frac{1}{5}\right|\)đạt GTNN
Mà \(\left|2x-\frac{1}{5}\right|\ge0\)
Do đó \(\left|2x-\frac{1}{5}\right|=0\)thì A đạt GTNN tức là A = 0 + 2017 = 2017 khi
\(2x-\frac{1}{5}=0=>2x=0+\frac{1}{5}=\frac{1}{5}=>x=\frac{1}{5}.\frac{1}{2}=\frac{1}{10}\)
b, Đặt \(B=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)
Ta thấy \(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}=>x+\frac{1}{2}>x+\frac{1}{3}>x+\frac{1}{4}\)
Do đó để B đạt GTNN thì \(x+\frac{1}{2}\)đạt GTNN
mà \(x+\frac{1}{2}\ge0\)
Từ 2 điều trên => \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)
Khi đó \(x+\frac{1}{3}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}\)
và \(x+\frac{1}{4}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}\)
Vậy GTNN của \(B=\left|0\right|+\left|-\frac{1}{6}\right|+\left|-\frac{1}{4}\right|=0+\frac{1}{6}+\frac{1}{4}=\frac{10}{24}\)khi x = -1/2
Phần b này thì mình không chắc lắm bạn tự xem lại nhé
Bài 1:
\(M=\frac{2017}{11-x}\)đạt GTLN <=> 11 - x đạt GTNN và 11 - x > 0 (nếu không thì M đạt giá trị âm (vô lí))
=> 11 - x = 1
=> x = 10
Vậy x = 10 thì M đạt GTLN tức là bằng \(\frac{2017}{1}=2017\)
\(A=\left(-2\right)\left(-1\frac{1}{2}\right).\left(-1\frac{1}{3}\right).\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{214}\right)\)
\(=2.\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{215}{214}=215\)
\(B=\left(-1\frac{1}{2}\right).\left(-1\frac{1}{3}\right).\left(-1\frac{1}{4}\right)....\left(-1\frac{1}{299}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{300}{299}=\frac{300}{2}=150\)
\(C=-\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{333333}{424242}\right)\)
\(=-\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(=-\frac{7}{4}.33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=-\frac{231}{4}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=-\frac{231}{4}\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(=-\frac{231}{4}.\frac{4}{21}=-11\)
=\(-\frac{6}{5}\).\(\frac{-7}{6}\).\(\frac{-8}{7}\).\(\frac{-9}{8}\).\(\frac{-10}{9}\).\(\frac{-11}{10}\)
=\(\frac{7}{5}\).\(\frac{9}{7}\).\(\frac{11}{9}\)
=\(\frac{11}{5}\)
\(=\frac{-6}{5}\times\frac{-7}{6}\times\frac{-8}{7}\times\frac{-9}{8}\times\frac{-10}{9}\times\frac{-11}{10}\)
\(=\frac{\left(-6\right).\left(-7\right).\left(-8\right).\left(-9\right).\left(-10\right).\left(-11\right)}{5.6.7.8.9.10}\)
\(=\frac{6\times7\times8\times9\times10\times11}{5\times6\times7\times8\times9\times10}\)
Triệt tiêu các thừa số bằng nhau ở tử và mẫu, ta có kết quả là \(\frac{11}{5}\)