K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

\(=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.\frac{1-4^2}{4^2}...\frac{1-98^2}{98^2}.\frac{1-99^2}{99^2}\)

\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{98^2-1}{98^2}.\frac{99^2-1}{99^2}\)

\(\frac{\left(2-1\right).\left(2+1\right)}{2^2}.\frac{\left(3-1\right).\left(3+1\right)}{3^2}.\frac{\left(4-1\right).\left(4+1\right)}{4^2}...\frac{\left(98-1\right)\left(98+1\right)}{98^2}.\frac{\left(99-1\right)\left(99+1\right)}{99^2}\)

\(=\frac{\left(2-1\right).\left(3-1\right).\left(4-1\right)...\left(99-1\right)}{2.3.4...98.99}.\frac{\left(2+1\right).\left(3+1\right).\left(4+1\right)...\left(99+1\right)}{2.3.4...98.99}\)

\(=\frac{1.2.3....98}{2.3.4...98.99}.\frac{3.4.5...100}{2.3.4...98.99}\)

\(=\frac{1}{99}.\frac{100}{2}\)

\(=\frac{50}{99}\)

Chúc bạn học tốt !!!

29 tháng 10 2016

A = -12 + 22 - 32 + 42 - ... - 992 + 1002

A = 1002 - 992 + ... + 42 - 32 + 22 - 12

A = (100 + 99).(100 - 99) + ... + (4 + 3).(4 - 3) + (2 + 1).(2 - 1)

A = 100 + 99 + ... + 4 + 3 + 2 + 1

\(A=\frac{\left(1+100\right).100}{2}=101.50=5050\)

\(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)

2B = (3 - 1)(3 + 1)(32 + 1)(34 + 1)...(332 + 1)

2B = (32 - 1)(32 + 1)(34 + 1)...(332 + 1)

2B = (34 - 1)(34 + 1)...(332 + 1)

2B = 364 - 1

\(B=\frac{3^{64}-1}{2}\)

18 tháng 8 2018

a)\(T=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)

ta có \(2+1=2^2-1\)

\(T=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)

\(T=\left(2^4-1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)

\(T=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(T=2^{32}-1\)

bạn ơi nơi chổ mấy cái  \(\left(2^2-1\right)\left(2^2+1\right)\)là nhân đa thức lại nha

b)

\(U=100^2-99^2+98^2-97^2+...+4^2-3^2+2^2-1^2\)

\(U=-1^2+2^2-3^2+4^2-...-97^2+98^2-99^2+100^2\)

\(U=2^2-1^2+4^2-3^2+...+98^2-97^2+100^2-99^2\)

\(U=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)(dùng hằng đẳng thức sô 3 nha)

\(U=3+7+...+199\)

\(U=1+2+3+\text{4+...+99+100}\)

số số hạng của U là :\(\left(100-1\right):1+1=100\) (số hạng)

tổng số số hạng của U là : \(\frac{\left(100+1\right).100}{2}=5050\)

à bạn coi lại cái đề nha đoạn sau hình như thiếu 2^2 thì phải

30 tháng 7 2016

Có đấy

30 tháng 7 2016

làm đi

16 tháng 8 2020

Bài 11:

1) Sửa lại đề là: \(A=127^2+146.127+73^2\)

\(\Rightarrow A=127^2+2.127.73+73^2\)

\(\Rightarrow A=\left(127+73\right)^2\)

\(\Rightarrow A=200^2\)

\(\Rightarrow A=40000\)

Vậy \(A=40000.\)

2) Sửa lại đề là: \(B=9^8.2^8-\left(18^4-1\right).\left(18^4+1\right)\)

\(\Rightarrow B=\left(9.2\right)^8-\left[\left(18^4\right)^2-1^2\right]\)

\(\Rightarrow B=18^8-\left(18^8-1\right)\)

\(\Rightarrow B=18^8-18^8+1\)

\(\Rightarrow B=0+1\)

\(\Rightarrow B=1\)

Vậy \(B=1.\)

16 tháng 8 2020

4) \(D=\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)

\(\Rightarrow2D=\left(3-1\right).\left(3+1\right).\left(3^2+1\right).\left(3^4+1\right).\left(3^8+1\right).\left(3^{16}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=3^{32}-1\)

\(\Rightarrow D=\frac{3^{32}-1}{2}\)

21 tháng 10 2016

A = 1002 - 992 + 982 - 972 + . . . + 22 - 12

= (100 - 99)(100 + 99) + (98 - 97)(98 + 97) + . . . (2 - 1)(2 + 1)

= 199 + 195 + . . . + 3

= 5050

B = 3(22 + 1)(24 + 1) . . . (264 + 1) + 1

= (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1)(264 + 1) + 1

= (24 - 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1) + 1

= (28 - 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1) + 1

= (216 - 1)(216 + 1)(232 + 1)(264 + 1) + 1

= (232 - 1)(232 + 1)(264 + 1) + 1

= (264 - 1)(264 + 1) + 1

= 2128 - 1 + 1

= 2128

22 tháng 10 2016

Câu C mk chép nhầm đề đó