Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ACB=90-60=30 độ
góc ACB<góc ABC<góc BAC
=>AB<AC<BC
b: Xét ΔBAM vuông tại A và ΔBHM vuông tại H có
BM chung
BA=BH
=>ΔBAM=ΔBHM
=>góc ABM=góc HBM
=>BM là phân giác của góc ABC
c: góc EBD=góc ABM
góc EDB=góc ABM
=>góc EBD=góc EDB
=>ΔEBD cân tại E
a) Xét tam giác \(ABM\) và tam giác \(NDM\):
\(\widehat{BAM}=\widehat{DNM}\left(=90^o\right)\)
\(MB=MD\)
\(\widehat{AMB}=\widehat{NMD}\)
Suy ra \(\Delta ABM=\Delta NDM\) (cạnh huyền - góc nhọn)
b) \(\Delta ABM=\Delta NDM\) suy ra \(\widehat{ABM}=\widehat{NDM}\)
mà \(\widehat{ABM}=\widehat{EBM}\).
suy ra \(\widehat{NDM}=\widehat{EBM}\) suy ra tam giác \(EBD\) cân tại \(E\)
suy ra \(BE=DE\).
a: Xét ΔABM vuông tại A và ΔNDM vuông tại N có
MB=MD
góc AMB=góc NMD
=>ΔABM=ΔNDM
b: góc EDB=góc ABM
=>góc EBD=góc EDB
=>ΔEBD cân tại E
tham khảo
kẻ thêm MK⊥BC⊥BC
ta có ΔABM=ΔKBM(ch.cgn)ΔABM=ΔKBM(ch.cgn)
lí do vì góc B1=góc B2(do BM phân giác),
góc BKM=góc BAM=90oo, cạnh BM chung
từ đó=>AM=MK(các cạnh t ứng)(1)
chứng minh ΔMND=ΔMAB(ch.cgn)ΔMND=ΔMAB(ch.cgn)
do góc M1=M2(đối đỉnh), MB=MD(gt), góc DNM=góc BAM(=90 độ)
=>AM=MN(2) từ(1)(2)=>MN=MK
trong tam giác MKC vuông tại K thì cạnh huyền MC lớn nhất
=>MC>MK<=>MC>MN(dpcm)
kẻ thêm MK\(\perp BC\)
ta có \(\Delta ABM=\Delta KBM\left(ch.cgn\right)\)
lí do vì góc B1=góc B2(do BM phân giác),
góc BKM=góc BAM=90\(^o\), cạnh BM chung
từ đó=>AM=MK(các cạnh t ứng)(1)
chứng minh \(\Delta MND=\Delta MAB\left(ch.cgn\right)\)
do góc M1=M2(đối đỉnh), MB=MD(gt), góc DNM=góc BAM(=90 độ)
=>AM=MN(2) từ(1)(2)=>MN=MK
trong tam giác MKC vuông tại K thì cạnh huyền MC lớn nhất
=>MC>MK<=>MC>MN(dpcm)