Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
(x + 1) (x + 2) (x + 4) (x + 5) = 40
<=> (x + 1)(x + 5) (x + 2)(x + 4) = 40
<=> (x2 + 6x + 5) (x2 + 6x + 8) = 40 (1)
Đặt a = x2 + 6x + 5
Ta có:
(1) <=> a(a + 3) = 40 (\(a\ge0\))
<=> a2 + 3a - 40 = 0
<=> a2 - 5a + 8a - 40 = 0
<=> a(a - 5) + 8(a - 5) = 40
<=> (a - 5) (a + 8) = 40
<=> \(\left[{}\begin{matrix}a-5=0\\a+8=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}a=5\\a=-8\end{matrix}\right.\) (TM)
Khi đó:
\(\left[{}\begin{matrix}x^2+6x+5=5\\x^2+6x+5=-8\end{matrix}\right.\)
+ Với: x2 + 6x + 5 = 5, ta có
x2 + 6x + 5 = 5
=> x2 + 6x = 0
<=> x(x + 6) = 0
<=> \(\left[{}\begin{matrix}x=0\\x+6=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
+ Với x2 + 6x + 5 = -8, ta có:
x2 + 6x + 5 = -8
(Tự giải cái này nhé. Mình không biết có đúng không)
Câu a:
ĐKXĐ: \(x\geq 1\)
\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)
\(\Leftrightarrow \sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)
\(\Rightarrow x-1=8x-3+2\sqrt{(3x-2)(5x-1)}\) (bình phương 2 vế)
\(\Leftrightarrow 7x-2+2\sqrt{(3x-2)(5x-1)}=0\)
(Vô lý với mọi \(x\geq 1\) )
Do đó PT vô nghiệm.
Câu b)
PT \(\Leftrightarrow \sqrt{3(x^2+2x+1)+4}+\sqrt{5(x^2+2x+1)+9}=5-(x^2+2x+1)\)
\(\Leftrightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}=5-(x+1)^2\)
Vì \((x+1)^2\geq 0, \forall x\) nên:
\(\sqrt{3(x+1)^2+4}\geq \sqrt{4}=2\)
\(\sqrt{5(x+1)^2+9}\geq \sqrt{9}=3\)
\(\Rightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}\geq 5(1)\)
Mặt khác ta cũng có: \(5-(x+1)^2\leq 5-0=5(2)\)
Từ \((1);(2)\Rightarrow \sqrt{3(x+1)^2+4}+\sqrt{5(x+1)^2+9}\geq 5\geq 5-(x+1)^2\)
Dấu "=" xảy ra khi $(x+1)^2=0$ hay $x=-1$ (thỏa mãn)
Vậy pt có nghiệm $x=-1$
a/ ĐKXĐ: ...
\(\sqrt{x-7}-\frac{1}{2}+\sqrt{x-5}-\frac{3}{2}=0\)
\(\Leftrightarrow\frac{x-\frac{29}{4}}{\sqrt{x-7}+\frac{1}{2}}+\frac{x-\frac{29}{4}}{\sqrt{x-5}+\frac{3}{2}}=0\)
\(\Leftrightarrow\left(x-\frac{29}{4}\right)\left(\frac{1}{\sqrt{x-7}+\frac{1}{2}}+\frac{1}{\sqrt{x-5}+\frac{3}{2}}\right)=0\)
\(\Leftrightarrow x=\frac{29}{4}\)
b/ \(\Leftrightarrow\sqrt{x^2-6x+9}=3x+2\left(x\ge-\frac{2}{3}\right)\)
\(\Leftrightarrow x^2-6x+9=9x^2+12x+4\)
\(\Leftrightarrow8x^2-18x-5=0\Rightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{1}{4}\end{matrix}\right.\)
c/
\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5x^2\left(x^2+2\right)+9}=5-2\left(x+1\right)^2\)
Do \(\left\{{}\begin{matrix}3\left(x+1\right)^2+9\ge9\\5x^2\left(x^2+2\right)\ge9\end{matrix}\right.\) \(\Rightarrow VT\ge\sqrt{9}+\sqrt{9}=6\)
\(VP=5-2\left(x+1\right)^2\le5< VP\)
Pt luôn vô nghiệm
a) Ta có : \(x^2+x+\frac{2}{3}\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{5}{12}\)
\(=\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{5}{12}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{5}{12}\)
Mà ; \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{5}{12}\ge\frac{5}{12}\forall x\)
Vậy GTNN của biểu thức là : \(\frac{5}{12}\) khi \(x=-\frac{1}{2}\)
I I là dấu giá trị tuyệt đối nhé
|7 + 5x| = 1 - 4x
=> \(\orbr{\begin{cases}7+5x=1-4x\left(đk:x\le\frac{1}{4}\right)\\7+5x=4x-1\left(đk:x\ge\frac{1}{4}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}7-1=-4x-5x\\7+1=4x-5x\end{cases}}\)
=> \(\orbr{\begin{cases}6=-9x\\8=-x\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{2}{3}\left(tm\right)\\x=-8\left(ktm\right)\end{cases}}\)
|4x2 - 2x| + 1 = 2x
=> |4x2 - 2x| = 2x - 1
=> \(\orbr{\begin{cases}4x^2-2x=2x-1\left(đk:x\ge\frac{1}{2}\right)\\4x^2-2x=1-2x\left(đk:x\le\frac{1}{2}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}4x^2-2x-2x+1=0\\4x^2-2x-1+2x=0\end{cases}}\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\4x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\x^2=\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\pm\frac{1}{2}\end{cases}}\)(tm)
Vậy ...