Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x (km) là độ dài quãng đường AB, y (giờ) là thời gian dự định đi để đến B đúng lúc 12 giờ trưa.
Điều kiện x > 0, y > 1 (do ôtô đến B sớm hơn 1 giờ).
+ Với v = 35km/h thì thời gian đi hết quãng đường AB là : t = (giờ)
Ô tô đến chậm hơn 2 giờ so với dự định ⇒ ⇔ x = 35y + 70.
+ Với v = 50 km/h thì thời gian đi hết quãng đường AB là : (giờ)
Ô tô đến sớm hơn 1h so với dự định ⇒ ⇔ x = 50y – 50.
- Gọi x (km) là quãng đường dài AB , y (giờ) là thời gian dự định đi từ A để đến B lúc 12h trưa .
đk : x > 0 , y > 1 ( vì ô tô đến B sớm hơn 1h )
Ta có 2TH sau :
+) TH1 :
- Xe đi với vận tốc 35km/h
- Xe đến B chậm hơn 2 giờ nên thời gian đi hết là : y + 2 ( giờ )
- Quãng đường đi được là : 35(y+2) (km)
=> Quãng đường không đổi nên ta có PT : x = 35(y+2) (1)
+) Trường hợp 2:
Xe đi với vận tốc: 50 km/h
Vì xe đến B sớm hơn 1 giờ nên thời gian đi hết là: y−1 (giờ)
Quãng đường đi được là: 50(y−1) (km)
Vì quãng đường không đổi nên ta có phương trình: x = 50(y−1)) (2)
Từ (1) và (2) ta có hệ phương trình :
\(\hept{\begin{cases}x=35\left(y+2\right)\\x=50\left(y-1\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=35y+70\\x=50y-50\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-35y=70\left(1\right)\\x-50y=-50\left(2\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}15y=120\\x-50y=-50\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=8\\x=-50+50y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=8\\x=-50+50.8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=8\\x=350\end{cases}\left(TM\right)}\)
Vậy quãng đường AB là 350km.
Thời điểm xuất phát của ô tô tại A là: 12 − 8 = 4 giờ
Bài 31 : Tính độ dài hai cạnh góc vuông của 1 tam giác vuông, biết rằng nêu tang mỗi cạnh lên 3 cm thì diện tích tam giác đó sẽ tăng thêm 36 cm vuông , và nếu 1 cạnh giảm đi 2 cm , cạnh kia giảm đi 4 Cm thì diện tích của tam giác giảm đi 26 cm vuông .
- Gọi độ dài hai cạnh góc vuông lần lượt là x và y [ đơn vị; cm , 4 (nhỏ hơn) x ≤ y ] - phím shifft nhà mình bị hư, bạn thông cảm, hì.
- Diện tích tam giác đó là; (xy)/2
- Theo đề bài ta có;
* nêu tang mỗi cạnh lên 3 cm thì diện tích tam giác đó sẽ tăng thêm 36 cm vuông;
[ (x+3)(y+3) ]/2 = (xy)/2 + 36
tương đương với; x + y = 21
* nếu 1 cạnh giảm đi 2 cm , cạnh kia giảm đi 4 Cm thì diện tích của tam giác giảm đi 26 cm vuông .
[ (x-2)(y-4) ]/2 = (xy)/2 - 26
tương đương với; 2x + y = 30
Giải hệ phương trình;
x + y = 21
2x + y = 30
ta được; x = 9, y = 12
Vậy; Độ dài hai cạnh góc vuông của tam giác lần lượt là 9cm và 12cm.
Bài 38 : Nếu 2 vòi nước cùng chảy vào 1 bể nước cạn ( ko có nước) thì bể sẽ đầy trong 1h 20 phút. Nếu mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể. Hỏi nếu mở riêng từng vòi thì thời gian để mỗi vòi chảy đây bể là bao nhiêu ?
- Gọi thời gian để vòi thứ nhất chảy một mình đầy bể là x [ giờ, x (lớn hơn) 0 ]
- Gọi thời gian để voi thứ hai chảy một mình đầy bể là y [ giờ, y (lớn hơn) 0 ]
- Lượng nước chảy vào bể trong một giờ của hai vòi lần lượt là 1/x và 1/y [ phần bể ]
Theo đề bài, ta có;
* Nếu 2 vòi nước cùng chảy vào 1 bể nước cạn ( ko có nước) thì bể sẽ đầy trong 1h 20 phút = 4/3 giờ
(1/x) + (1/y) = 1/(4/3 = 3/4 [1]
* Nếu mở vòi thứ nhất trong 10 phút ( 1/6 giờ ).và vòi thứ 2 trong 12 phút ( 1/5 giờ ) thì chỉ được 2/15 bể.
(1/x)(1/6) + (1/y)(1/5) = 2/15 [2]
Giải hệ phương trình [1] và [2] bằng phương pháp đặt ẩn phụ, ta được;
x = 2 ; y = 4
Gọi x (km) là độ dài quãng đường Ab, y (giờ) là thời gian dự định đi để đến B đúng lúc 12 giờ trưa. Điều kiện x > 0, y > 1 (do ôtô đến B sớm hơn 1 giờ).
Thời gian đi từ A đến B với vận tốc 35km là \(\frac{x}{35}\) = y + 2.
Thời gian đi từ A và B với vận tốc 50km là \(\frac{x}{50}\) = y - 1.
Ta có hệ phương trình: <=>\(\int^{\frac{x}{35}=y+2}_{\frac{x}{50}=y-1}\Leftrightarrow\int^{x=35\left(y+2\right)}_{y=50\left(y-1\right)}\)
Giải ra ta được: x = 350, y = 8.
Vậy quãng đường AB là 350km.
Thời điểm xuất phát của ô tô tại A là: 12 - 8 = 4 giờ.
Gọi x (km) là độ dài quãng đường Ab, y (giờ) là thời gian dự định đi để đến B đúng lúc 12 giờ trưa. Điều kiện x > 0, y > 1 (do ôtô đến B sớm hơn 1 giờ).
Thời gian đi từ A đến B với vận tốc 35km là \(\frac{x}{35}\) = y + 2.
Thời gian đi từ A và B với vận tốc 50km là \(\frac{x}{50}\) = y - 1.
Ta có hệ phương trình: <=>\(\int^{\frac{x}{35}=y+2}_{\frac{x}{50}=y-1}\Leftrightarrow\int^{x=35\left(y+2\right)}_{y=50\left(y-1\right)}\)
Giải ra ta được: x = 350, y = 8.
Vậy quãng đường AB là 350km.
Thời điểm xuất phát của ô tô tại A là: 12 - 8 = 4 giờ.
\(T=x^4+y^4+z^4\)
áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)
\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)
\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)
dấu "=" xảy rakhi và chỉ khi
\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)
vậy dấu "=" có xảy ra
\(< =>MIN:T=\frac{4}{3}\)
sửa dòng 3 dưới lên
\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)
Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)
gọi s là quãng đường AB
nếu chạy với vận tốc 35km/h thì thời gian đi từ A đến B là s/35 và xe sẽ đến B lúc 14 giờ
nếu chạy với vận tốc 50km/h thì thời gian đi từ A đến B là s/50 và xe sẽ đến B lúc 11 giờ
=> s/35- s/50= 14 - 11 = 3 (giờ)
=> 10s/350 - 7s/350 = 3
=> s= 350 (km)
vậy quãng đường là 350 km
thời gian đi từ A đến B nếu xe đi với vận tốc 50km là 350/50= 7 giờ
vậy thời điểm xuất phát là 11-7=4 giờ
Gọi thời gian dự kiến mà xe ô tô sẽ đi từ A đến B là x(h)
(ĐIều kiện: x>0)
Độ dài quãng đường AB khi xe đi với vận tốc 35km/h là:
35(x+2)(km)
Độ dài quãng đường AB khi xe đi với vận tốc 50km/h là:
50(x-1)(km)
Do đó, ta có phương trình:
35(x+2)=50(x-1)
=>10(x-1)=7(x+2)
=>10x-10=7x+14
=>3x=24
=>x=8(nhận)
Thời điểm xuất phát của ô tô là:
12 giờ-8 giờ=4 giờ
Độ dài quãng đường AB là:
35(8+2)=35*10=350(km)
:v Làm bài 31 thôi nhá , còn lại all tự làm -..-
Gọi x (cm) , y (cm) là độ dài hai cạnh góc vuông của tam giác vuông (x > 2, y > 4).
Diện tích tam giác ban đầu là \(\frac{1}{2}xy\left(cm^2\right)\)
+ Tăng mỗi cạnh lên 3cm thì tam giác vuông mới có độ dài 2 cạnh là x + 3(cm) và y + 3 (cm)
Diện tích tam giác mới là : \(\frac{1}{2}\left(x+3\right)\left(y+3\right)\left(cm^2\right)\)
Diện tích tăng thêm 36 cm2 nên ta có p/trình :
\(\frac{1}{2}\left(x+3\right)\left(y+3\right)=\frac{1}{2}xy+36\)
\(\Leftrightarrow\left(x+3\right)\left(y+3\right)=xy+72\)
\(\Leftrightarrow xy+3x+3y+9=xy+72\)
\(\Leftrightarrow3x+3y=63\)
\(\Leftrightarrow x+y=21\)
+ Giảm một cạnh 2cm và giảm cạnh kia 4cm thì tam giác vuông mới có 2 cạnh là : x – 2 (cm) và y – 4 (cm).
Diện tích tam giác mới là : \(\frac{1}{2}\left(x-2\right)\left(y-4\right)\left(cm^2\right)\)
Diện tích giảm đi 26cm2 nên ta có phương trình :
\(\frac{1}{2}\left(x-2\right)\left(y-4\right)=\frac{1}{2}xy-26\)
\(\Leftrightarrow\left(x-2\right)\left(y-4\right)=xy-52\)
\(\Leftrightarrow xy-4x-2y+8=xy-52\)
\(\Leftrightarrow4x+2y=60\)
\(\Leftrightarrow2x+y=30\)
Ta có hệ phương trình : \(\hept{\begin{cases}x+y=21\\2x+y=30\end{cases}}\)
Lấy phương trình thứ hai trừ phương trình thứ nhất ta được :
\(\hept{\begin{cases}\left(2x+y\right)-\left(x+y\right)=30-21\\x+y=21\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+y-\left(x+y\right)=9\\x+y=21\end{cases}\Leftrightarrow\hept{\begin{cases}x=9\\y=12\end{cases}}}\)
Vậy tam giác có hai cạnh lần lượt là 9cm và 12cm
nhiều bài thế hả trời