\(\frac{3\cdot7\cdot13\cdot37\cdot39-10101}{505050-70707}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2019

Đề : \(\frac{3\cdot7\cdot13\cdot37\cdot39-10101}{505050-70707}\)

\(\Rightarrow\frac{\left(3\cdot7\cdot13\cdot37\right)\cdot39-10101}{505050-70707}\)

\(\Rightarrow\frac{10101\cdot39-10101}{505050-70707}\)

\(\Rightarrow\frac{10101\cdot\left(39-1\right)}{505050-70707}\)

\(\Rightarrow\frac{10101\cdot38}{50\cdot10101-7\cdot10101}\)

\(\Rightarrow\frac{10101\cdot38}{10101\cdot\left(50-7\right)}\)

\(\Rightarrow\frac{10101\cdot38}{10101\cdot43}\)

\(\Rightarrow\frac{38}{43}\)

4 tháng 2 2018

\(\frac{2}{3}\)

\(\frac{3.7.13.37.19-10101}{505050+70707}\)=\(\frac{10101.39-10101}{10101.50+10101.7}\)=\(\frac{10101.\left(39-1\right)}{10101.\left(50+7\right)}\)=\(\frac{38}{57}\)=\(\frac{2}{3}\)

11 tháng 5 2017

Bài 1 :
a) =) \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)\(1-\frac{1}{101}=\frac{100}{101}\)
b) =) \(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
=) \(\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)( theo phần a)
Bài 2 :
-Gọi d là UCLN \(\left(2n+1;3n+2\right)\)( d \(\in N\)* )
(=) \(2n+1⋮d\left(=\right)3.\left(2n+1\right)⋮d\)
(=) \(6n+3⋮d\)
và \(3n+2⋮d\left(=\right)2.\left(3n+2\right)⋮d\)
(=) \(6n+4⋮d\)
(=) \(\left(6n+4\right)-\left(6n+3\right)⋮d\)
(=) \(6n+4-6n-3⋮d\)
(=) \(1⋮d\left(=\right)d\in UC\left(1\right)\)(=) d = { 1;-1}
Vì d là UCLN\(\left(2n+1;3n+2\right)\)(=) \(d=1\)(=) \(\frac{2n+1}{3n+2}\)là phân số tối giản ( đpcm )
Bài 3 :
-Để A \(\in Z\)(=) \(n+2⋮n-5\)
Vì \(n-5⋮n-5\)
(=) \(\left(n+2\right)-\left(n-5\right)⋮n-5\)
(=) \(n+2-n+5⋮n-5\)
(=) \(7⋮n-5\)(=) \(n-5\in UC\left(7\right)\)= { 1;-1;7;-7}
(=) n = { 6;4;12;-2}
Vậy n = {6;4;12;-2} thì A \(\in Z\)
Bài 4:
A = \(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
\(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{111111}\right)\)
\(10101.\left(\frac{1}{111111}+\frac{5}{222222}\right)\)\(10101.\left(\frac{2}{222222}+\frac{5}{222222}\right)\)
\(10101.\frac{7}{222222}\)( không cần rút gọn \(\frac{7}{222222}\))
\(\frac{7}{22}\)

30 tháng 3 2020

\(\frac{2.3+4.6+14.21}{3.5+6.10+21.3.5}\)

\(=\frac{2+2+7}{5+5+4}\)

\(=\frac{11}{14}\)

BÀI TÍP THEO TÁCH RA RỒI RÚT GỌN NHA MK BẬN RÒI

14 tháng 2 2016

Công tử họ Nguyễn cấm sủa

24 tháng 7 2020

Trả lời:

a, \(\frac{6\times9-2\times17}{63\times3-119}=\frac{2.3\times9-2\times17}{7.9\times3-7.17}\)

                                     \(=\frac{2\times\left(3\times9-17\right)}{7\times\left(3\times9-17\right)}\)

                                     \(=\frac{2}{7}\)

b, \(\frac{3\times13-13\times18}{15\times40-80}=\frac{13\times\left(3-18\right)}{40\times\left(15-2\right)}\)

                                           \(=\frac{13\times-15}{40\times13}\)

                                           \(=\frac{-3}{8}\)

c, \(\frac{-1997.1996+1}{\left(-1995\right).\left(-1997\right)+1996}=\frac{-1997.1996+1}{\left(1-1996\right).\left(-1997\right)+1996}\)

                                                              \(=\frac{-1997.1996+1}{-1997-1996.\left(-1997\right)+1996}\)

                                                              \(=\frac{-1997.1996+1}{-1996.\left(-1997\right)-1}\)

                                                              \(=\frac{-1997.1996+1}{-\left[1996.\left(-1997\right)+1\right]}\)

                                                               \(=-1\)

d, \(\frac{3.7.13.37.39-10101}{505050-70707}=\frac{10101.39-10101}{50.10101-7.10101}\)

                                                   \(=\frac{10101.\left(39-1\right)}{10101.\left(50-7\right)}\)

                                                   \(=\frac{10101.38}{10101.43}\)

                                                   \(=\frac{38}{43}\)

b: \(\dfrac{121212}{424242}=\dfrac{12}{42}=\dfrac{2}{7}\)

c: \(\dfrac{187187187}{221221221}=\dfrac{187}{221}=\dfrac{11}{13}\)